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Abstract
Understanding the cost and benefit of global public health institutions is important but challenging. This study provides

a cost-benefit analysis of the first public health-oriented patent pooling and licensing institution, the Medicines Patent

Pool (MPP), which is devoted to improving generic drug licensing and supply in low- and middle-income countries. A

simple structural model of demand and supply is estimated on a dataset that covers 103 LMIC and 29 HIV drugs with

data on sales, MPP licenses, patents, country-year level diseases and demographics, and institutional factors during

2007-2017. Counterfactuals are simulated in the absence of the MPP or with further expansions. The estimated

benefits to consumers and firms far exceed the operating costs.
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1. Introduction 

Understanding global public health institutions is increasingly important given the lack of 
rapid and affordable drug access in Low and Middle-Income Countries (LMIC) during recent 
pandemics (e.g., AIDS and Covid-19). Among many advances, the Medicines Patent Pool (MPP) 
has made much progress in licensing Covid-19 technologies and, most recently, cancer drugs.1 
As the first-ever public health-oriented voluntary intellectual property (IP) licensing institution, 
the MPP was founded in 2010 to target HIV/AIDS drugs and has since expanded into many 
disease areas. The MPP negotiates with branded pharmaceutical firms to voluntarily pool patents 
and allow streamlined, low-cost generic licensing for sales in LMIC. Patent pools have been 
widely used in many industries to ease licensing hurdles and spur technology diffusion (Shapiro, 
2001; Lerner and Tirole, 2004; Lampe and Moser, 2013), but a cost-benefit analysis is not 
always feasible given data limitations. As a modern pool with open data, the MPP limits sales 
territories to LMIC and increases drug access without reducing R&D (Wang, 2022), so a welfare 
analysis for LMIC drug access would be informative regarding the overall welfare impact.  

Understanding the welfare impact of an institution in the context of LMIC drug access is 
challenging. In the case of HIV/AIDS, the disease cannot be cured, but daily take of HIV drug 
cocktails can turn HIV from fatal to a chronic condition. It is worth noting that HIV drug supply 
is critical, with almost 30 million patients living with HIV relying on daily drug cocktails. The 
daily drug cocktail reliance and chronic nature make it difficult to directly estimate lives saved, 
especially when many factors in the supply chain, distribution, and patient behavior can affect 
mortality. All else equal, improved generic drug supply can increase drug access for patients in 
need and extend their productive life span, which can be better captured by consumer surplus in 
the absence of more accurate measures. The MPP has successfully engaged with branded drug 
providers: four out of the total nine branded HIV drug providers available by 2017 joined the 
MPP.2 An economic analysis of social welfare and organizational costs would be valuable to 
understand the return to the MPP, and the framework can be extended for future scenarios.  

This paper uses a structural model to estimate the welfare effects of the MPP and conduct 
a cost-benefit analysis using its operating costs. Specifically, I estimate a nested discrete choice 
demand model to capture the feature that compounds are more substitutable within the same drug 
class and HIV drug choices are sequential (Figure A1). Physicians first choose which drug class 
(based on whether a patient is treatment-naïve and any known resistance), then select which 
drugs within a chosen class can be used (e.g., based on different side effects). Note that the pool 
does not directly enter patients’ preferences towards a drug but will make it cheaper to produce. 
Two extreme cases are estimated for the supply side, competitive pricing and Bertrand-Nash 
oligopolistic pricing, and I then simulate counterfactuals without the MPP or with more 
aggressive expansion. I then use estimates from the demand and supply models to simulate 
counterfactuals: what if the MPP did not exist at all? What if the MPP has implemented an 
expansion to the broadest geographic coverage possible? I obtain the changes in consumer and 
producer surplus accordingly and compare them with the operating costs of the pool afterward.  

 
1 Sources: 1) all licenses: https://medicinespatentpool.org/progress-achievements/licences; 2) Covid-related: 
https://medicinespatentpool.org/covid-19; 3) latest MPP license: https://medicinespatentpool.org/news-publications-
post/mpp-signs-licence-agreement-to-increase-access-to-nilotinib-for-the-treatment-of-chronic-myeloid-leukaemia.  
2 The four branded entities including the two market leaders, Gilead Science and ViiV Healthcare (i.e., a joint 
venture of GlaxoSmithKline, Pfizer, and Shionogi), and in addition, AbbVie Inc. and Bristol-Myers Squibb.  

https://medicinespatentpool.org/progress-achievements/licences
https://medicinespatentpool.org/covid-19
https://medicinespatentpool.org/news-publications-post/mpp-signs-licence-agreement-to-increase-access-to-nilotinib-for-the-treatment-of-chronic-myeloid-leukaemia
https://medicinespatentpool.org/news-publications-post/mpp-signs-licence-agreement-to-increase-access-to-nilotinib-for-the-treatment-of-chronic-myeloid-leukaemia


   

 

 

The model is estimated on a comprehensive dataset that covers 103 LMIC and 29 HIV 
drugs with data on sales, MPP licenses, patents, country-year level diseases and demographics, 
and institutional factors between 2007-2017. The dataset is constructed based on various 
resources, including drug profiles and dosing information from AIDSinfo.gov, time-varying 
MPP coverage information from its official website and licensing contracts, drug sales data from 
the Global Fund’s Price and Quality Reporting, international drug patent data from the MPP 
patent portal (MedsPAL) and commercial source Drug Patent Watch, country-year level control 
variables from the World Bank and the Institute for Health Metrics and Evaluation. Wang (2022) 
documented more detailed information on the data construction. The MPP is estimated to 
increase welfare substantially compared to no-MPP cases. Across analyses, consumer surplus 
increases by $0.7-1.4 billion (8.6-18.9%), and producer surplus can also increase by up to $181 
million (4.5%). The welfare gains far exceed the $33 million operating cost in the same period.  

This paper contributes to the literature on drug diffusion to LMIC with a new angle using 
simple structural models to facilitate cost-benefit analyses with application to a health institution.  
Maintaining an affordable and stable drug supply has been particularly challenging in developing 
countries (Kremer, 2002), which can be facilitated by procurement institutions (Danzon et al., 
2015; Dubois et al., 2021; Wang and Zahur, 2021). Institutions facilitating resource pooling can 
improve welfare, but a prior study of the US context shows that the welfare effect is ambiguous 
in merge simulation with drug cocktails (Song et al., 2017). Extensive patenting makes licensing 
difficult (Hemphill and Sampat, 2012). Prior studies find that the MPP increases drug diffusion, 
but do not carry out a full cost-benefit analysis of the institution (Wang, 2022; Galasso and 
Schankerman, 2022). This paper offers the first systematic cost-benefit analysis based on 
estimation of supply and demand in a large sample, which is important to inform future policies 
regarding new health institution building and expansion.  

This article is organized as follows. Section 2 presents the model and estimation. Section 
3 reports the results and counterfactual simulations. Section 4 concludes. The appendix provides 
more technical details and empirical results.  
 

2. Model and Estimation 

Quantifying the cost-benefit of a patent pool is difficult, as most products are sold 
globally despite relatively concentrated innovation activities. The MPP separates the market into 
sales territories and increases access and R&D (Wang, 2022), so a welfare analysis for LMIC in 
the diffusion sample is informative yet conservative. Another typical challenge is to characterize 
ex ante substitution patterns across technologies, which is feasible in my setting using drug 
classes. The decision of HIV drug use follows sequential choices: first, the choice of a drug 
class, and then a choice of drugs within the chosen class. The MPP would not directly enter 
patients’ preferences towards a drug (as most patients in LMIC would not be familiar with the 
MPP) but would make the drug cheaper to produce. Including the MPP as a cost shifter is tied 
with prior findings and the idea that the pool lowers licensing and royalty costs (per-unit based).  

I observe drug purchases but not how patients use them, which limits the richness of the 
demand model I can estimate. Additionally, my sample period (2007-2017) is insufficiently long 
to model new drug launches, resulting in conservative welfare estimations. I also abstract away 
from branded-generic interactions with the drug-country-year level aggregate data, as it is 
limited by data and not a core part of the research question. This exercise is best viewed as an 
empirical illustration of drug cocktails in the context of a patent pool, which is useful to 
understand the welfare impact of a biomedical patent pool and examine its cost versus benefit.   



   

 

 

 

2.1 Demand-Side: Nested Discrete Choice Model 
 

Patients in each country choose whether to take drugs and choose among available 
choices following physicians’ suggestions. The choice sets of drugs vary across countries and 
over time. ܦ�௧   denotes the set of HIV drugs available from my dataset in country ܿ at year ݐ, and 
index drug by ݆. Each patient-physician pair in a country-year decides whether to take a drug in 
the choice set ܦ�௧ = {ͳ,ʹ, . . , ݀�௧} or to use an outside option: either taking no drugs, or those 
from sources outside my sample. Each drug ݆ belongs to drug class ݃ሺ݆ሻ based on its mechanism 
of action. Specifically, each patient-physician pair ݅ in country ܿ at year ݐ chooses drug ݆ from 
the ܦ�௧ + ͳ options to maximize the conditional indirect utility function as below:  
௜௝�௧ݑ  = �௝�௧ߚ − ௝�௧݌ߙ + �௝�௧⏟            �ೕ�� + ௜�ሺ௝ሻ�௧ߞ + ሺͳ − �ሻߝ௜௝�௧.   (1) 

 
Here, ߜ௝�௧ is the mean utility of drug ݆ in country-year market ܿݐ. �௝�௧ is a vector of observables, 

including the number of compounds in a drug, number of distinct products for a drug in each 
country-year, HIV prevalence and death rates, income, log(population), institutional factors, and 
fixed effects at country and year levels. ݌௝�௧ is the average price of drug ݆ in country-year ܿݐ. �௝�௧ 
is the unobserved quality of drug ݆ for patients in country ܿ in year ߝ .ݐ௜௝�௧ is an independent taste 

shock following the extreme value distribution, ߞ௜�ሺ௝ሻ�௧ is a group-specific taste of the patient-

physician pair, and ሺͳ − �ሻ measures the relative weight of idiosyncratic and group preferences.  
 Given the nested logit functional form, the market share of each product for any set of 
product qualities ߜ௝ can be calculated à la Berry (1994).3 The estimation equation is as follows:  

 ln(ݏ௝) − lnሺݏ଴ሻ = � lnሺݏ௝|�ሺ௝ሻሻ + �௝ߚ − ௝݌ߙ + �௝⏟          �ೕ−�0 ,        (2) 

where ݏ௝|�ሺ௝ሻ is drug ݆’s share of its nest in a given country-year market ܿݐ. I estimate the model 

using two-stage least square with instruments for conditional market share ln ሺݏ௝|�ሺ௝ሻሻ and price ݌௝. Three instruments are included: patent status, the number of manufacturers for a drug in a 

country-year, and the number of distinct competing products (i.e., drug product and manufacturer 
combinations for other drugs in the same drug class). Patent status IV is relevant as a patented 
drug (in a country in a given year) is usually priced higher, and the patent status would not affect 
consumer preference directly conditional on using the same drug, as most patients would not 
generate specific utility on the patent status itself. The latter two IVs are the standard “BLP 
instruments” following Berry et al. (1995).4 Standard errors are clustered at the drug-country 
level. Using parameters from the demand estimation, the nested logit model allows researchers to 
calculate the expected consumer surplus in each market using equation (3) below:  
 

 

3 A plain logit model is also implemented to test the robustness of demand specifications. The market size is 
defined as 30% of the population. The results are robust to a set of other definitions (Table A3).  
4 The BLP instruments are valid as long as the drug characteristics are exogenous. The justification is that drug 
characteristics are determined at the time of trials; once approved, firms cannot change the characteristics in 
the short-run. The instruments are relevant, as a drug that has close competitors (drugs within the same drug 
class work through the same mechanism of action) is likely to be priced lower.  



   

 

 

௧ሻ��ܥሺܧ               = ଵ� ln {Σ� [Σ௝∈�exp ቀ �ೕଵ−�ቁ]ଵ−�}.         (3) 

 
Here, the choices among nests (i.e., drug classes) depend only on their mean utilities ߜ௝ = �௝ߚ ௝݌ߙ− + �௝, as there are no nest-specific observables entering the utility function. The total 

consumer surplus during the sample period can be calculated as the summation of market-size-
weighted expected consumer surplus values across markets. Therefore, the baseline consumer 
surplus with the MPP can be calculated independently of the supply-side estimation.  
 

2.2 Supply-Side: Bertrand-Nash Game 
 

In the absence of the universe of data and a proper model on oligopolistic pricing with a 
competitive fringe and threats of compulsory licensing in over a hundred LMIC, two simple and 
conservative cases are modeled. The first one models supply using constant marginal cost pricing 
as in Bertrand competition. The second uses a Bertrand-Nash game in an oligopolistic setting. In 
both cases, the MPP affects pricing by lowering marginal costs as the MPP lowers royalty rates 
in joint licensing are also typically calculated on a per-unit basis.5  

In the first case, a marginal cost pricing scheme is estimated to capture the feature that 
generic firms produce at marginal costs, and generic market shares are high in LMIC. The results 
from previous parts support competitive pricing in that generic shares are high in base levels and 
increase with the MPP. I use j to denote drug-country pair and estimate the following equation.  

௝݌  = � ௝ܿ = �௝ߛ + ௝���ߚ + �௝                 (4) 

 
Here, MPP indicates whether a drug-country is in the MPP in a year. �௝ is a vector of 

drug-country-year level controls including whether a drug is effectively patented in a country-
year, number of drug products and competitors for a drug in a country-year, country-year level 
HIV prevalence and age-adjusted death rates, population, income, institutional factors, country 
and year fixed effects. Quantity is not included in this baseline case because firms do not face 
capacity constraints in a competitive market with many generic firms. Once the pricing equation 
is estimated, counterfactual prices can be simulated by changing the MPP indicator.  

In the second case, oligopolistic pricing is estimated in a static Bertrand–Nash game with 
differentiated products. Firms can have market power in the short run before reaching the long-
run competitive equilibrium. Each firm acts as either a single-product or multi-product drug firm 
where each drug belongs to a nest (i.e., drug class). This design captures the feature that the 
brand ownership of a drug does not matter as much for generic drug makers, but the “business 
stealing effect” comes from drugs with similar characteristics (i.e., drug class). Each country-
year is a market, and a firm maximizes profit from all drugs they produce using the equation:  
 

         Π = Σ௝(݌௝ −� ௝ܿ) × (௝݌)௝ݏ × �.              (5) 

 

 

5 Due to the lack of complete HIV drug sales, I cannot back out the fixed costs and separately identify 
additional MPP-induced cost reduction. This suggests cost results are likely conservative. In common with 
prior work (Song et al., 2017), I model drug pricing as a static game without sufficiently rich data.  



   

 

 

Here, ݆ indexes drug ݆ in a country-year market, and � represents the same market size measure 
used in the demand estimation. Note that the substitution patterns between drugs ݆ and ݇ are 
affected by their corresponding drug classes ݃௝ and ݃௞. The first-order condition yields:  

      sj(݌௝) + Σ௞ሺ݌௞ −�ܿ௞ሻ × �௦ೖሺ�ሻ��ೕ = Ͳ.         (6) 

 

The price derivative matrix is defined as Δ௝௞ = − �௦ೖ��ೕ, a la Berry et al. (1995). Here, ௝݂ indicates 

that drug j is owned by firm f, and two ownership structures are estimated. First, a single-product 
oligopoly is estimated, where each representative firm owns one product. Second, a multi-
product oligopoly with drug-level ownership is estimated, where a cross-firm cocktail owner is 
assigned to a separate entity. Appendix B provides the derivation and additional results.  
 

Δ௝௞ = {  
௝ݏߙ   ቀ ଵଵ−� − �ଵ−� �|௝ݏ − ௝ቁݏ , ݆ = ௝ݏߙ−                                          ݇ ቀ �ଵ−� �|௞ݏ + ௞ቁݏ , ݆ ≠ ݇, ݃௝ = ݃௞, ௝݂ = ௞݂                       −ݏߙ௝ݏ௞          , ݆ ≠ ݇, ݃௝ ≠ ݃௞, ௝݂ = ௞݂           Ͳ                     , .݋ �. ሺ݅. ݁. , ௝݂ ≠ ௞݂ሻ

 (7) 

 
Rewriting the F.O.C as ݏ − Δ[݌ − �ܿ] = Ͳ; it follows that ݌ = �ܿ + Δ−ଵݏ. The new 

estimation equation is as below, suppressing the country-year subscript and indexing drug with ݆: 
                 � ௝ܿ = ௝݌ − Δ−ଵݏ௝ = �௝ߛ + ௝���ߚ + ௝ݍߟ + �௝ .           (8) 

 
The covariate �௝ is specified the same as in equation (4), except that quantity ݍ is included in the 

regression to capture firms’ capacity constraints in oligopolistic settings. ݍ is instrumented using 
the number of competing products in the same class (Berry et al., 1995; Song et al., 2017).  
 

3 Results and Counterfactuals 

Demand estimation results are consistent with model assumptions (Table A1). In the 
nested logit model, the coefficient estimate of within-group market share is 0.863 and significant 
at the 1% level. This result supports the assumption that drugs are closer substitutes within a 
group than between groups. A comparison of price coefficients in OLS and the nested logit 
model reveals a positive correlation between price and demand shocks and that the instrumental 
variables mitigate the problem. The price coefficient estimates increase in absolute value from -
0.137 in the OLS model to -1.946 in the nested logit model, and the estimates are always 
statistically significant at the 1% level.6  

Supply-side estimates suggest that the MPP reduced drug costs, and the result is robust to 
various assumptions concerning market structure. Results under constant marginal cost pricing 
are similar to those with oligopolistic pricing and suggest significant MPP-induced cost 
reductions at the 1% level (Table A2). Specifically, the MPP reduces cost by $0.6 per patient-day 

 

6 The first-stage Kleibergen–Paap F-statistic for both endogenous variables is 19.30, and the Sanderson–
Windmeijer multi-variate first-stage F-statistics for each endogenous variable are much larger.  



   

 

 

under competitive pricing and by $1.9 under oligopolistic pricing across ownership assumptions. 
The estimated quantity coefficients are positive yet small and are consistent with supply curves 
being upward sloping, as oligopolistic firms face some capacity constraint as quantity goes up. In 
cases where marginal costs are not independent of quantity, patent protection increases costs, and 
the number of competitors in the market reduces marginal costs. These results are robust to the 
inclusion of country-year level observable controls and to statistical tests on the instruments.  
 Parameters from demand and supply estimation are then used to simulate counterfactuals 
in which the MPP does not exist or expand. For example, the MPP parameters are shut down in 
the estimated oligopolistic marginal cost curve. Counterfactual equilibrium prices and quantities 
are computed by solving the new first-order condition and updating for each country-year 
market. New consumer and producer surpluses are then computed (see Appendix B for details).  

The welfare and counterfactual results quantify how much the MPP increases consumer 
and producer surpluses (Table 1). Consumers benefit from MPP-induced cost savings via joint 
licensing, and producers can benefit from market expansion in LMIC and increased sales via the 
generic network. The estimated current consumer surplus across all markets (country-year) is 
$8.7 billion, on the same order of magnitude as the total revenue during the sample period ($4.3 
billion) and consistent with demand being elastic. Compared to the counterfactual cases without 
a pool, the MPP results in $0.69-1.39 billion consumer surplus gains across market structure 
specifications. These are equivalent to 8.60-18.94% increases from the counterfactual consumer 
surpluses. The estimated producer surplus gains are up to $181 million and are consistent with 
theory in that producers can also benefit from cost-reducing technologies.  
 

Table 1: Welfare Estimation: Consumer & Producer Surpluses 
 

welfare 
estimates 

($ M) 

MC 
pricing 
flat MC 

Bertrand-Nash Oligopoly 

single-prod. 
firm 

multi-prod. 
firm ܥ�଴̂ 7,354.5 8,055.1 8,025.8 ܥ 8,747.7 8,747.7 8,747.7 ̂�ܥ�ଵ̂ 8,883.3 8,821.5 8,816.4 

    Δ$:  ଵ 1.55% 0.84% 0.78%̂�ܥ :%ଵ 135.6 73.8 68.7 Δ̂�ܥ :$଴ 18.94% 8.60% 8.99% Δ̂�ܥ :%଴ 1,393.2 692.6 721.9 Δ̂�ܥ
     ��̂଴ 0 3,998.1 4,194.8 ��̂ 0 4,179.5 4,309.6 ��̂ଵ 0 4,320.7 4,462.0 
     Δ$: ��̂଴ 0 181.4 114.8 Δ%: ��̂଴ 0 4.54% 2.74% Δ$: ��̂ଵ 0 141.2 152.4 Δ%: ��̂ଵ 0 3.38% 3.54% 

 

Notes: This table reports estimating the gains in consumer and producer surpluses with the MPP. Here, ܥ�̂ 

denotes the total consumer surplus cross-market. ܥ�଴̂ is the counterfactual consumer surplus without the MPP. 

Similarly, ��̂ and ��଴̂ denote the actual and counterfactual producer surpluses, respectively. ܥ�ଵ̂ and ��ଵ̂ 



   

 

 

denote the counterfactual consumer and producer surpluses with a fully expanded MPP (covering all 
developing countries in the sample for each compound in the pool), respectively.  
 

 The costs of operating the patent pool can be incorporated using a back-of-the-envelope 
cost-benefit type analysis using audited financial statements from the MPP (Table A4). The total 
operating cost of the MPP is about $33 million from its establishment in July 2010 to the end of 
2017. This amount is small compared to the welfare gains estimated above. These counterfactual 
results, together with the diffusion and innovation analyses, suggest that the MPP is an effective 
business model in the LMIC setting with elastic demand for drugs treating infectious diseases. 
Lower prices from generic access generate larger responses in quantity increases, which can 
further increase profits. This calculation is conservative as both branded and generic firms also 
benefit from reduced administrative costs that are not incorporated here.  
 

4 Conclusion 

Based on a structural model of demand and supply in a sample of 103 LMIC over 2007-
2017, I find that the MPP increases consumer surplus by about $0.7 billion (9%) and can 
increase producer surplus by up to $181 million (4.5%), far exceeding the $33 million operating 
costs in the same period. The benefit-cost ratio is 25.4-26.5 based on social welfare, and 21 and 
3.5-5.5 based on consumer and producer surplus, respectively. Overall, the MPP increases 
welfare by lowering the cost of licensing and offering new models of marketing in 
underdeveloped LMIC markets in a cost-effective manner. My welfare estimations are larger 
than those reported in the “back of envelope calculation” by Galasso and Schankerman (2022), 
because their calculation is based on a smaller sample of 32 countries and with roughly unit 
elastic demand. There are some limitations. My sample period is insufficiently long to model 
new drug launches, resulting in conservative welfare calculations. Thus, this exercise is mainly 
as an empirical cost-benefit evaluation of the Medicines Patent Pool on LMIC drug access.  

Although this paper focuses on HIV drugs due to data availability, the idea can be applied 
more broadly. It is worth noting that HIV/AIDS and its comorbidities are estimated to yield 
larger disease burdens than Covid-19 in many LMIC given the care disruption caused by Covid-
19 (Bell and Hansen, 2021). In fact, many institutions and investments for the AIDS pandemic 
are critical resources to fight Covid-19 in LMIC.7 In addition, federal agencies and practitioners 
have shown growing interests in building more biomedical patent pools (Clark et al., 2000; Van 
Overwalle, 2016), and understanding the cost and benefit is very important for resource 
allocation. A structural model-based cost-benefit estimation contributes to the endeavor with 
monetary measures of both cost and benefit without the controversies of comparing money to 
lives. Overall, this paper contributes to understanding novel institutions to improve drug supply.  
 
 
 
  

 

7 Source: https://www.unaids.org/sites/default/files/media_asset/20200909_Lessons-HIV-COVID19.pdf.  

https://www.unaids.org/sites/default/files/media_asset/20200909_Lessons-HIV-COVID19.pdf
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Appendix A: Figures and Tables  

 

 

Figure A1: Two-level Nested Logit Decision Structure 

 
Notes: This figure illustrates the sequential decision structure for the nested logit demand. The acronyms 
for the drug classes (based on mechanisms of action) are: NNRTI (Non-Nucleoside Reverse Transcriptase 
Inhibitors), NRTI (Nucleoside Reverse Transcriptase Inhibitors), PI (Protease Inhibitors), II (Integrase 
Inhibitors). Detailed information on drug within each drug class is available as in Table A1 and Appendix 
D (Medical Appendix) in Wang (2022). The outside option represents sales not captured by the sample.  

 

  



 
 

 

Table A1: Results from the Demand Estimation 
 

  (1) (2) (3)  
OLS Nested logit Logit lnሺݏ௝|௚ሺ௝ሻሻ 0.702*** 0.862*** 

 

 
(0.0144) (0.0814) 

  ***௝ -0.137*** -1.946*** -3.483݌ 
(0.0227) (0.243) (0.441) 

    
drug age 
(U.S. appr.) 

0.0119* -0.196*** -0.449*** 
(0.00637) (0.0404) (0.0838) 

prod. variety 
0.345*** -0.00503 0.434** 
(0.0335) (0.122) (0.179) 

regulatory 
quality 

0.00194 -0.0646*** -0.121*** 
(0.00558) (0.0208) (0.0378) 

rule of law 
0.0226*** 0.0507*** 0.0532* 
(0.00546) (0.0162) (0.0291) 

control of 
corruption 

-0.00783* 0.0361** 0.0785*** 
(0.00446) (0.0148) (0.0272)     

Kleibergen-Paap F statistic 19.50  
1st stage 
 (௝|௚ݏ)

 104.42  

1st stage (݌௝) 46.91 54.56 
    

country FE, year FE, and Xj controls 
Observations 7,084 7,084 7,084 

 
Note: This table presents results of estimating the nested logit demand model as in Equation (2) and compares it 

with OLS and a plain logit. The instruments for conditional market share and price are: (1) whether a drug is 

effectively patented in the country-year, (2) the number of manufacturers for the same drug in a country-year, and 

(3) the number of competing products, i.e., drug product-firm combinations for other drugs in the same drug class. 

IVs for the plain logit do not include the second instrument to avoid over-identification. Only main parameters of 

interests are reported for simplicity. Observable controls, Xj, include within-drug product variety in a country-year, 

number of compounds within a drug, number of years since a drug’s U.S. approval, country-year level HIV 

prevalence and age-adjusted death rates, institutional factors (i.e., the six world governance indicators), 

log(population) and GDP per capita. The excluded instruments are at drug-country-year level: patent status, number 

of competitors and number of close competitors in the same drug class. The first-stage statistics displayed 

immediately under coefficients-of-interests are the Kleibergen-Paap F statistic that are robust to heteroskedasticity. 

The first-stage F statistics for each endogenous variable is the Sanderson-Windmeijer multivariate F test of excluded 

instruments. Standard errors are clustered at drug-country level. Robust p-value: *** p<0.01, ** p<0.05, * p<0.1.  

  



 
 

 

Table A2: Estimations of Pricing Equations  
 

Dept. var: 
marginal cost ($) 

(1) (2) (3) 

MC 
pricing  
flat MC 

Bertrand-Nash Oligopoly 

single-prod. 
firm 

multi-prod. 
firm ܲܯ ௝ܲ -0.642*** -1.908*** -1.952***  

(0.112) (0.524) (0.539) ܳ௝  3.60e-07*** 3.83e-07*** 

  (1.27e-07) (1.31e-07) 

#variety -0.209*** 0.445* 0.495**  
(0.0616) (0.234) (0.244) 

#firmsdct -0.310*** -1.584*** -1.662***  
(0.0398) (0.480) (0.494) 

Patentdct -0.173 0.210 0.198  
(0.192) (0.255) (0.262) 

     
year FE Y Y Y 

country FE Y Y Y 

Xj controls Y Y Y 

Kleibergen-Paap rk Wald F-stat 16.66 16.66 

Observations 7,084 7,084 7,084 

 

Notes: This table reports the results from estimating competitive marginal cost pricing and oligopolistic pricing on 

the drug-country-year diffusion sample using Equations (4) and (8), respectively. Only main parameters of interests 

are reported for simplicity. �௝ is a vector of drug-country-year level controls including whether a drug is effectively 

patented in a country-year, number of drug products and competitors for a drug in a country-year, country-year level 

HIV prevalence and age-adjusted death rates, population, GDP per capita, and institutional factors. Country and year 

fixed effects are always included. Quantity variable is instrumented by the number of competing products in the 

same drug class within a market (country-year). Standard errors are clustered at drug-country level. The first-stage 

F-statistics reported are adjusted for heteroskedasticity clustering. Robust p-value: *** p<0.01, ** p<0.05, * p<0.1.  

 

 

 
  



 
 

 

Table A3: Sensitivity Analysis of Demand Estimation to Market Size 
  

(1) (2) (3) (4) (5) 
market size 
measures 

10% 
population 

30% 
population 

50% 
population 

70% 
population 

pop*pr. HIV 
death15to59 lnሺݏ௝|௚ሻ 0.862*** 0.861*** 0.861*** 0.861*** 0.863***  

  ***௝ -1.968*** -1.942*** -1.938*** -1.937*** -1.941݌ (0.0811) (0.0809) (0.0810) (0.0812) (0.0826)
(0.247) (0.243) (0.242) (0.242) (0.243) 

      
1st stage joint 19.50 19.50 19.50 19.50 19.50 

1st stage (ݏ௝|௚) 104.42 104.42 104.42 104.42 104.42 

1st stage (݌௝) 46.91 46.91 46.91 46.91 46.91 

      
country FE Y Y Y Y Y 
year FE Y Y Y Y Y 
Xj controls Y Y Y Y Y 
Observations 7,084 7,084 7,084 7,084 7,084 

 
Note: This table presents results of estimating the nested logit demand model as in Equation (2), and each column 

demonstrates robustness of the estimation to alternative market size measures. Observable controls, Xj include 

within drug product variety in a country-year, number of compounds within a drug, number of years since a drug’s 

US approval, country-year level HIV prevalence and age-adjusted death rates, institutional factors (i.e., the six world 

governance indicators), log(population) and GDP per capita. The excluded instruments are at drug-country-year 

level: patent status, number of competitors and number of close competitors in the same drug class. The first-stage 

statistics displayed immediately under coefficients-of-interests are the Kleibergen-Paap F statistic that are robust to 

heteroskedasticity. The first-stage F statistics for each endogenous variable is the Sanderson-Windmeijer 

multivariate F test of excluded instruments. Each j denotes drug-country (dc) for simplicity in notations. Robust p-

value: *** p<0.01, ** p<0.05, * p<0.1.  

 

  



 
 

 

Table A4: Pool Operating Expenses from Financial Statement 
 

time period 
use of the funds 

(raw $/SFr.) 
CHF/USD 
(annual) 

MPP costs 
($ current) 

2010.7-2011.12 $ -4,254,666 NA -4,254,666 

2012.1-2012.12 SFr. -4,086,052 0.9377 -4,357,526 

2013.1-2013.13 SFr. -4,271,467 0.9269 -4,608,336 

2014.1-2014.12 SFr. -4,332,580 0.9147 -4,736,613 

2015.1-2015.12 SFr. -4,759,073 0.9628 -4,942,951 

2016.1-2016.12 SFr. -4,568,395 0.9848 -4,638,906 

2017.1-2017.12 SFr. -4,974,406 0.9842 -5,054,263 

 
Notes: The MPP operating costs are obtained from the financial statements in the “Annual Reports” from the MPP. 

Specifically, “use of the funds” within the “statement of changes in capital” is used to measure the costs of this pool. 

This calculation is similar to manually summing up the personnel and administrative costs (the two main categories 

of MPP expenditure). The annual foreign exchange rate of Swiss Francs to one U.S. Dollar is provided by the 

Federal Reserve Bank of St. Louis.   

 
  



 
 

 

Appendix B: Mathematical Appendix  
 
B.1 Deriving the price substitution matrix  

I derive the substitution matrix by taking partial derivatives of market share k w.r.t price 
j. Here, I derive the general expression for the price derivatives from the demand side. With 
information from the supply-side, the relevant elements from the matrix are the products owned 
by the same branded firm in a given market (i.e., subset products owned by the same firm).  
 
Given that  

௝ݏ̂ = ௘ �ೕభ−�(∑ ௘ �ೕభ−�ೕ∈� )−�
∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ ௞ݏ̂ ,  = ௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�

∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ  , and ̂ݏ௞|௚ = ௘ �ೖభ−�∑ ௘ �ೖభ−�ೖ∈� = ௦̂ೖ௦̂�  

 

ௗ௦ೖௗ௣ೕ = ௗௗ௣ೕ [ ௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�
∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]  

      = (௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�)′[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]−௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]′
[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]మ   

      = (௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�)′⏞                ≡ಲ

[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] − ௘ �ೖభ−�ቆ∑ ௘ �ೖభ−�ೖ∈� ቇ−�[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]′⏞                ≡ಳ

[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]మ  

      = ஺[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]− ௞ݏ̂ × ஻[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] ,      eqn. (B1) 

 

where ܣ ≡ ቆ݁ �ೖభ−� (∑ ݁ �ೖభ−�௞∈௚ )−�ቇ′ = (݁ �ೖభ−�)′ (∑ ݁ �ೖభ−�௞∈௚ )−� + ݁ �ೖభ−� ቆ(∑ ݁ �ೖభ−�௞∈௚ )−�ቇ′ 
 

and ܤ = [(∑ ݁ �ೖభ−�௞∈௚ )ଵ−�]′ ݂݅ ݃ሺ݇ሻ = ݃ሺ݆ሻ; = [ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−�]′ ݂݅ ݃ሺ݇ሻ ≠ ݃ሺ݆ሻ.  
 
In the following part, I derive the analytic forms of the price derivatives for three cases. In each 
case, I first derive the expressions for A and B and then plug them back into eqn. (B1).  
 

Simplification note: that (݁ �ೖభ−�)′ = Ͳ if ݆ ≠ ݇ and ቆ(∑ ݁ �ೖభ−�௞∈௚ )−�ቇ′ = Ͳ if ݃ሺ݆ሻ ≠ ݃ሺ݇ሻ.  
 



 
 

 

Case 1: j=k (diagonal elements) 
ܣ  = ቆ݁ �ೕభ−�ቇ′ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� + ݁ �ೕభ−� ቆቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−�ቇ′  
    = − �ଵ−� ݁ �ೕభ−� ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� + ݁ �ೕభ−� × ��ሺଵ−�ሻ × ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� × ௘ �ೕభ−�∑ ௘ �ೕభ−�ೕ∈�

⏞    =௦̂ೕ|�
  

    = − �ଵ−� ݁ �ೕభ−� ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� (ͳ −  (௝|௚ݏ̂�
    = − �ଵ−� ௝(ͳݏ̂ − (௝|௚ݏ̂� × [∑ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−��௚=଴ ]  
ܤ  = [ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−�]′ = ሺͳ − �ሻ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� ቆ݁ �ೕభ−�ቇ′  
    = ݁ߙ− �ೕభ−� ቆ∑ ݁ �ೕభ−�௝∈௚ ቇ−� = ௝ݏ̂ߙ− × [∑ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−��௚=଴ ]  
 
Plug back to equation (B1),  
 

 
ௗ௦ೕௗ௣ೕ = − �భ−�௦̂ೕ(ଵ−�௦̂ೕ|�)×[∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ ] 

[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] − ௝ݏ̂ × −�௦̂ೕ×[∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ ] 
[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ]  

       = − �ଵ−� ௝(ͳݏ̂ − (௝|௚ݏ̂� −  ௝ݏ௝̂ݏ̂ߙ
       = ௝ݏ̂ߙ− ቀ ଵଵ−� − �ଵ−� ௝|௚ݏ̂ +   ௝ቁݏ̂
 
 
Case 2: ݆ ≠ ݇, ݃ሺ݆ሻ = ݃ሺ݇ሻ (different alternatives within the same nest) 
 

ܣ = (݁ �ೖభ−�)′⏞    =଴ (∑ ݁ �ೖభ−�௞∈௚ )−� + ݁ �ೖభ−� ቆ(∑ ݁ �ೖభ−�௞∈௚ )−�ቇ′  
    = ݁ �ೖభ−�ሺ−�ሻ (∑ ݁ �ೖభ−�௞∈௚ )−�−ଵ ݁ �ೕభ−� × −�ଵ−� 

    = ��ଵ−� × ௘ �ೖభ−�∑ ௘ �ೖభ−�ೖ∈�⏟    ௦̂ೖ|�
× ݁ �ೕభ−� × (∑ ݁ �ೖభ−�௞∈௚ )−�⏟              ௦̂ೕ×∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ

= ��ଵ−� ௝ݏ௞|௚̂ݏ̂ × ∑ (∑ ݁ �ೖభ−�௞∈௚ )ଵ−��௚=଴  

 



 
 

 

ܤ = [(∑ ݁ �ೖభ−�௞∈௚ )ଵ−�]′ = ሺͳ − �ሻ (∑ ݁ �ೖభ−�௞∈௚ )−� ቆ݁ �ೕభ−�ቇ′  
    = ௝ݏ̂ߙ− × [∑ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−��௚=଴ ]   
 
Plug back to equation (B1),  
 

 
ௗ௦ೖௗ௣ೕ = ��భ−�௦̂ೖ|�௦̂ೕ×∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ

[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] − ௞ݏ̂ × −�௦̂ೕ×[∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ ] 
[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] = ௝ݏ̂ߙ ቀ �ଵ−� ௞|௚ݏ̂ +  ௞ቁݏ̂

 
 
Case 3: ݆ ≠ ݇, ݃ሺ݆ሻ ≠ ݃ሺ݇ሻ (different alternatives in different nests) 
 

ܣ = (݁ �ೖభ−�)′⏞    =଴ (∑ ݁ �ೖభ−�௞∈௚ )−� + ݁ �ೖభ−� ቆ(∑ ݁ �ೖభ−�௞∈௚ )−�ቇ′⏞            =଴ = Ͳ  

ܤ  = [∑ (∑ ݁ �ೖభ−�௞∈௚ )ଵ−��௚=଴ ]′ = [ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−�]′ = ௝ݏ̂ߙ− × [∑ ቆ∑ ݁ �ೕభ−�௝∈௚ ቇଵ−��௚=଴ ]    
 
Plug back to equation (B1),  
 

 
ௗ௦ೖௗ௣ೕ = ௞ݏ̂− × −�௦̂ೕ×[∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ ] 

[∑ ቆ∑ ௘ �ೖభ−�ೖ∈� ቇభ−���=బ ] =  ௞ݏ௝̂ݏ̂ߙ

 
 
Summary: Finally, I summarize the three cases together.  
 

ௗ௦ೖௗ௣ೕ = {  
௝ݏ̂ߙ−   ቀ ଵଵ−� − �ଵ−� ௝|௚ݏ̂ + ݆ ௝ቁݏ̂ = ௝ݏ̂ߙ݇ ቀ �ଵ−� ௞|௚ݏ̂ + ௞ቁݏ̂  ݆ ≠ ݇, ݃ሺ݆ሻ = ݃ሺ݇ሻݏ̂ߙ௝̂ݏ௞ ݆ ≠ ݇, ݃ሺ݆ሻ ≠ ݃ሺ݇ሻ   

 

Notes: (1) here ߙ is the absolute value of the price coefficient. (2) when calculating the Δ̂௝௞ =− ௗ௦ೖௗ௣ೕ, one also needs to put an extra condition ௝݂ = ௞݂ in each case to index for drug ownership.  



 
 

 

B.2 Counterfactual estimation procedures  
 

Two counterfactual situations are evaluated: 1) without a patent pool; 2) with a fully expanded 
patent pool (once a compound enters, no geographic segmentation within my sample period). 
The goal is to use estimated demand and supply parameters to simulate counterfactual prices and 
quantities in each scenario (under different market structure assumptions) and compute changes 
in consumer and producer surpluses.  
 
I investigate two broad cases in the supply-side market structure: marginal cost pricing and a 
Bertrand-Nash game. In the first case of marginal cost pricing, I assume marginal cost curves to 
be flat and independent of quantity. Counterfactuals regarding this case are fairly straightforward 
as counterfactual prices can be simulated by adjusting the counterfactual values of the MPP 
variable. In this case, consumers obtain all the social surplus.  
 
In the case of a Bertrand-Nash game, I simulate counterfactual prices, quantities, and marginal 
costs by optimization in each country-year market. This case is then broken down to three sub-
cases: single product oligopoly and multi-product oligopoly. The major difference across the 
three cases lies in how I define the ownership matrix. In the single product case, only the 
diagonal elements in the substitution matrix are relevant to a firm’s pricing decision. In the 
multi-product case, I assign ownership based on branded-firm’s drug ownership and treat cross-
firm cocktails as owned by a separate firm.  
 
 
Numerical optimization: oligopolistic pricing, with single/multi-product firms 
௝̂݌          = ௣ೕ݊݅݉݃ݎ� ௝̂݌‖  −݉�̂௝ − Δ̂௝௞−ଵ × ௝⏟    ௠�௞௘௨௣̂ݏ̂ ೕ 

‖ଶ    (1) 

௝ݍ̂             = Prjሺ̂݌௝ሻ × ܯ = ௝ሻ̂݌௝ሺݏ̂ ×  (2)                ܯ

      ݉�௝(̂ݍ௝) = ܲܯߚ ௝ܲ௖௙ + �௝ߛ + ௝ݍ̂ߟ + �௝          (3) 

 

௝ݏ̂ = ௘ �ೕభ−�(∑ ௘ �ೕభ−�ೕ∈� )−�
∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ , where ߜ௝(̂݌௝) = �௝ߚ + �௝ −  ௝ (4)̂݌ߙ

 

Δ̂௝௞ = {  
௝ݏ̂ߙ   ቀ ଵଵ−� − �ଵ−� ௝|௚ݏ̂ − ௝ቁݏ̂ , ݆ = ௝ݏ̂ߙ−                                     ݇ ቀ �ଵ−� ௞|௚ݏ̂ + ௞ቁݏ̂ , ݆ ≠ ݇, ݃௝ = ݃௞, ௝݂ = ௞݂                   −ݏ̂ߙ௝̂ݏ௞          , ݆ ≠ ݇, ݃௝ ≠ ݃௞, ௝݂ = ௞݂        Ͳ                     , .݋ �. ሺ݅. ݁. , ௝݂ ≠ ௞݂ሻ

(5) 

 



 
 

 

௝|௚ݏ̂ = ௘ �ೕభ−�∑ ௘ �ೕభ−�ೕ∈� , where ߜ௝(̂݌௝) = �௝ߚ + �௝ −  ௝        (6)̂݌ߙ

 
Here, for each market, a profit maximization decision is built within (1) to ensure that the 
counterfactual new price is generated from the Bertrand-Nash game by minimizing the squared 
distance between the price and the sum of marginal cost and markup. The latter two are 
simultaneously updated using (2) and (3) within the fmincon minimization within (1). I impose 
mild conditions that prices are positive and less than twice the actual non-counterfactual prices to 
ensure that price search is within a realistic range.  
 
More specifically, the algorithm starts with an initial guess of ̂݌௝ for each country-year market. It 

then calculates the objective function using ̂݌௝, relevant demand and supply parameters, and the 

counterfactual marginal cost. The optimal new prices (from the first-order condition) are 
obtained using fmincon. The quantity and marginal cost are then updated with the above 
equation system.  
 
 
Additional notes on an alternative estimation approach 
 

Alternatively, one can get the quantity equation (1) using a simulation approach (less efficient).  
 
One can obtain equation (1) by simulating demand from the nested logit utility function.  
௜௝௖௧ݑ  = �௝௖௧ߚ − ௝௖௧݌ߙ + �௝௖௧⏟            �ೕ�೟=ln(௦ೕ)−lnሺ௦బሻ−� lnሺ௦ೕ|�ሻ+ ௜௚ሺ௝ሻ௖௧ߞ + ሺͳ − �ሻߝ௜௝௖௧ 
 
Therefore, the utility from counterfactual prices for a given �ݐ can be expressed as below. Where 
the ߞ௜௚ሺ௝ሻ + ሺͳ − �ሻߝ௜௝ cannot be simulated with the independent GEV simulator in MATLAB, it 

shall be simulated using the inverse CDF approach based on the nested logit CDF (Train book, p. 
79, equation (4.1)).  
௝ ሻ̂݌௜௝ሺݑ  = �௝ߚ + �௝⏟    �ೕ−�௣ೕ + ௝̂݌ ߙ + ௜௚ሺ௝ሻߞ + ሺͳ − �ሻߝ௜௝ 
 

To simulate the utility for ௦ܰ௜௠ =100,000 consumers across drugs in a given market (country-
year), draw ௦ܰ௜௠ × � nested logit errors from the Generalized Extreme Value (GEV) distribution. 
Here ݆ ∈ {Ͳ,ͳ, … , �} indicates distinct drugs within a market, including the outside option 0. For 
each simulated consumer ݅, (1) calculate the ݑ௜௝௖௧, ∀݆, (2) find the ݆ that maximizes utility for ݅, 
and (3) define the realized choices for person ݅ as �௝ሺ݅ሻ = ͳ if ݅ choses ݆.  
With the realized choices, one can calculate ̂ݏ௝ = ∑ �ೕሺ௜ሻ�ೞ೔�೔ �ೞ೔�  and ̂ݍ௝ = ܯ ×   .௝ for a single marketݏ

Then, repeat the process for each country-year market and save the results into a vector for (2).  
 
  



 
 

 

B.3 Graphic representation of model fit, and additional results 
 

To test the performance of the optimization and fixed-point algorithm, I use actual data instead 

of counterfactual values to test whether I can reproduce actual prices and quantities. In addition, 

I run the algorithm multiple times and confirm the results are not sensitive to the initial guess. 

The numeric precision is about 99% in all of these placebo tests. I report graphic representation 

below. In all cases, the placebo prices and quantities fit well with the 45-degree lines.1  

 

 
Figure B1: Graphical Demonstration of Model Fits  

 

1 I also produced corresponding graphs for “actual vs. counterfactual” and they are available upon request.  



 
 

 

B.4 Additional results with alternative marginal cost assumptions 
 

In the main analyses, I use flat marginal cost for competitive pricing and increasing marginal 
cost for oligopolistic pricing. These assumptions are good choices to capture the differences that 
capacity constraints matter in the two cases I study. This also provides more conservative 
estimates of the welfare gains from the MPP to consumers and producers.  
 
As an additional exercise and comparison, I also produce the opponent counterfactuals: 
specifically, for price-taking firms with increasing marginal cost curves and oligopolistic pricing 
with flat marginal cost curves. From a realistic standpoint, the former case is more interesting as 
a transition stage of the two cases I discuss in the main text. However, it is worth noting that 
“price-takers with increasing marginal cost curve” is a typical case where the counterfactual 
producer surplus can explode. The reason is that when extrapolating the MC(q=0) point that is 
needed for calculating the producer surplus triangle, the MC(q) curve would generate many 
negative prices with small quantities that would not be observed in the data. In other words, the 
in-sample fit can be fine, but 0.5*beta(q)*q2 provides overly large estimations for producer 
surplus (grey numbers), despite the still reasonable estimates of relative changes. The 
“oligopolistic pricing with flat MC” case uses strong assumptions that firms actively optimize 
and extract profit in LMIC without any capacity constraints, which contradicts reality and thus 
generates larger divisions in counterfactual cases. I report them below for a comparison.  
 

Table B1: Welfare Re-Estimation: Alternative MC Assumptions 
 

welfare 
estimates 

($ M) 

MC 
pricing 
MC(q) 

Oligopolistic Pricing (w/ flat MC) 
single-prod. 

firm 
multi-prod.  

firm �ሺܥ�଴̂ሻ 8,112.5 6,409.2 6,246.4 �ሺܥ�ሻ 8,747.7 8,747.7 8,747.7 �ሺܥ�ଵ̂ሻ 8,836.3 8,821.1 8,811.5 
     Δ$:  ଵ 88.6 73.4 63.8 Δ%: CSଵ 1.01% 0.84% 0.73%�ܥ :$଴ 7.83% 36.49% 40.04% Δ�ܥ :%଴ 635.2 2,338.5 2,501.3 Δ�ܥ
     �ሺܲ�଴̂ሻ 252$B 3,071.3 3,315.2 �ሺܲ�ሻ 266$B 4,179.5 4,309.6 �ሺܲ�ଵ̂ሻ 267$B 4,271.8 4,392.1 
     Δ$: P�଴ 14.1$B 1,108.2 994.4 Δ%: P�଴ 5.58% 36.08% 30.00% Δ$: P�ଵ 338.4 92.3 82.5 Δ%: PSଵ 0.13% 2.21% 1.91% 

 
When assuming marginal cost increases in quantity, a shift (down) in the supply curve will also 
affect equilibrium quantity. Regarding this case of competitive pricing with upward sloping 
marginal cost curve, I simulate counterfactuals using fixed point iterations. In the following part, 



 
 

 

I described more details regarding how to use fixed point algorithm or optimization to solve for 
the equilibrium values in relevant scenarios.  
 
 
Fixed point iteration: competitive pricing with upward sloping MC curve 
௝ݍ̂             = Prjሺ̂݌௝ሻ × ܯ = ௝ሻ̂݌௝ሺݏ̂ ×  (1)              ܯ

௝̂݌  = ݉�௝(̂ݍ௝) = ܲܯߚ ௝ܲ௖௙ + �௝ߛ + ௝ݍ̂ߟ + �௝   (2) 

 

To fix ideas, I use ܲܯ ௝ܲ௖௙ = Ͳ, ∀݆ (counterfactual: without the MPP) to elaborate below. Note 

that the MPP only enters through supply side but not via the demand side. The analytical form 
for ̂ݏ௝ in equation (1) is as below.2  
 

௝ݏ̂ = ௘ �ೕభ−�(∑ ௘ �ೕభ−�ೕ∈� )−�
∑ (∑ ௘ �ೕభ−�ೕ∈� )భ−���=బ , where ߜ௝(̂݌௝) = �௝ߚ + �௝ −  ௝̂݌ߙ

 

Now, obtaining counterfactual equilibrium price and quantity using fixed point algorithm:  
 

For each market (country-year), find (̂݌௝ , .ݏ (௝ݍ̂  ௝଴ close to݌ and (2) hold. Start with a guess (1) .ݐ

the true value with a random component, e.g., ݌௝଴ = ௝ሺͲ.95݌ + Ͳ.ͳ ∗   .ሺͳሻሻ݉ݎ݋݂݅݊ݑ
 
Iteration #1:  ̂ݍ௝ଵ = ௝ሻ̂݌௝ሺݏ̂ ×  ܯ

௝ଵ̂݌  = �௝ߛ + �௝⏟      ௣ೕ−�௤ೕ +  ௝ଵݍ̂ߟ
 
… iteration # ݈ + ͳ: ̂ݍ௝௟+ଵ = ௝ሻ̂݌௝ሺݏ̂ ×  ܯ

௝௟+ଵ̂݌  = �௝ߛ + �௝ +  ௝௟+ଵݍ̂ߟ
 

Continue until ‖݌௝௟+ଵ − ‖௝௟݌ <  ߝ
 
 

 

 
2 More details are available from the book by Kenneth Train (2009) “Discrete Choice Methods with Simulation.” 


