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1.  Introduction 

More than 40 years have passed since Kuroda and Yotopoulos (1978) developed the first agricul-

tural household (hereafter, AH) model.  In spite of a number of extensions and generalizations of 

the basic model, many of which are documented by Taylor and Adelman (2003), the fundamental 

comparative statics of the canonical AH model developed by Strauss (1986) have yet to be derived 

in their full generality.  The goal, therefore, is to correct this shortcoming.  This is of value not 

only for completeness, but for empirical reasons too, as the resulting comparative statics are ob-

servable and refutable, thereby permitting a complete statistical test of the theory for the first time. 

 Note that fundamental, or intrinsic, or basic, comparative statics are defined as the refutable 

comparative statics of a static optimization problem that follow from the (i) technical assumption 

that an interior, locally differentiable solution exists, and (ii) basic assumptions that make up the 

underlying economic theory.  For example, the negative semidefiniteness of the Slutsky matrix is 

the fundamental comparative statics of the neoclassical utility maximization model, inasmuch as 

it follows from the technical assumption that an interior, locally differentiable solution exists, and 

the economic assumptions that preferences are monotonic in goods and independent of prices and 

income, and that agents are price-takers.  Importantly, the main result herein is as basic to the 

canonical AH model as the Slutsky matrix is to the neoclassical utility maximization model. 

 As suggested by the neoclassical utility maximization model, the key to deriving the fun-

damental comparative statics of the AH model is that they should be formulated in a compensated 

form, i.e., in the form of a linear combination of the partial derivatives of the decision variables 

with respect to the parameters.  Strauss (1986) appears to be the first to recognize the importance 

of compensated comparative statics in the AH model.  Despite this recognition, Strauss (1986) was 

not successful in uncovering the fundamental comparative statics of the AH model. 

 The most successful attempt at deriving the fundamental comparative statics of an AH 

model is that by Saha (1994).  Saha (1994) contemplated a special case of the AH model in which 

an AH was assumed to (i) produce one good by way of a concave production function, (ii) consume 

two goods, namely, the output of the farm and a composite commodity, and (iii) have no fixed 

factors of production.  In the language of Paris (1989), the model studied by Saha (1994) contains 

a broken symmetry, and is thus less general than the AH model developed by Strauss (1986) and 

studied herein.  Furthermore, because of the assumed concavity of the production function, the 

results of Saha (1994) are less general than they could be for this reason too. 

 The method employed herein to derive the fundamental comparative statics was developed 

by Partovi and Caputo (2006, 2007).  The basic idea lies in the observation that the given param-

eters of an optimization problem are not, in general, the natural ones for formulating basic com-

parative statics results.  That this is true can be seen in the neoclassical utility maximization model, 

where a linear combination of partial derivatives in the form of a compensated derivative must be 

employed in order to obtain the semidefiniteness of the Slutsky matrix.  Crucially, Partovi and 

Caputo (2006) showed that in order to derive the constraint-free semidefiniteness property of a 

comparative statics matrix without requiring any restriction on the structure of an optimization 

problem, the compensated derivatives must be chosen along directions that are tangent to the level 

surfaces of all the constraint functions at each point of the parameter space.  Equivalently, acting 

on the constraint functions, the compensated derivatives are required to return zero at all points of 

parameter space.  This null property is the defining feature of generalized compensated derivatives.  

Indeed, it is the property responsible for the form of the compensated derivatives, and concomi-

tantly, the form of the fundamental comparative statics.  Crucially, by employing compensated 
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derivatives that possess the null property, the process of deriving comparative statics differentially 

accounts for the constraints of the optimization problem, thereby leading to a semidefinite com-

parative statics matrix free of constraint. 

2.  The Canonical Agricultural Household Model and Assumptions 
Let  denote the vector of goods consumed by a price-taking AH at prices , where 

 is the consumption of leisure time and  is its price, i.e., the wage rate.  Prefer-

ences are represented by a felicity function , the value of which is . 

 An AH has  units of time available, which it divides between leisure  and 

household labor .  As a result the time constraint is .  An AH also produces a 

vector of outputs , which it sells at prices .  The outputs are produced by combin-

ing a vector of variable inputs distinct from labor, say , a fixed input , as well as 

the total amount of labor used in production , the latter being purchased at the wage rate 

.  Observe that if , then an AH is a net buyer of labor, whereas if , then it is 

a net seller.  In view of the multiproduct nature of an AH, the production function  is given in 

implicit form as , and is the second constraint faced by an AH. 

 The third and final constraint faced by an AH is its budget constraint.  Total revenue con-

sists of the revenue from the sale of its outputs , where “¢” denotes transposition, labor earn-

ings , and exogenous income .  An AH has variable input costs , where  

is the variable input price vector, total labor costs , and expenditures on consumption exclud-

ing leisure, namely .  The budget constraint of an AH therefore takes the form 

.  But by solving the time constraint for household labor, 

i.e., , and substituting it in the budget constraint, one arrives at the so-called full-income 

version of the budget constraint, viz., . 

 Pulling all of the above information together, an AH is asserted to behave as if solving the 

constrained optimization problem 

 . (1) 

Problem (1) is essentially the canonical AH model put forth by Strauss (1986, pp. 71–73).  In order 

to ease the notation, define  as the parameter vector, i.e., 

  (2) 

Definition (2) is also helpful in deriving the basic comparative statics of problem (1).  Note that 

the parameter  is suppressed as an element of  henceforth, seeing as it is a fixed constant. 

 The following assumptions are imposed on problem (1) and discussed subsequently. 

(A1) For all ,  and , . 

(A2) For all , , , , 

 , , , and . 

(A3) For all ,  an open set, there exists a  interior solution to problem (1), denoted 

 by , with Lagrange multipliers . 
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Assumption (A1) says that preferences are representable by a twice continuously differentiable 

function that is strictly monotonic.  Supposition (A2) asserts that the implicit production function 

is twice continuously differentiable, strictly increasing in the outputs, and strictly decreasing in the 

inputs—the usual assumptions.  Note that no global curvature assumptions have been placed on 

the felicity or production functions, as none are required for the derivation of the fundamental 

comparative statics.  And finally, because the focus is on differential comparative statics, suppo-

sition (A3) is essential, as the main result relies only on local necessary conditions of optimality 

and local differentiability. 

3.  Preliminary Results 
This section is devoted to establishing four results that are useful in proving the central result of 

the paper.  To begin, define  as the decision vector, that is, 

   (3) 

As was the case for Eq. (2), Eq. (3) is helpful in deriving the fundamental comparative statics of 

problem (1).  The Lagrangian for problem (1) is given by 

 , (4) 

while the first-order necessary conditions are 

 , , (5) 

 , , (6) 

 , , (7) 

 ,  , (8) 

 , (9) 

 . (10) 

Being a solution to problem (1) for all ,  and  are 
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 The arrive at the first two results, rearrange Eq. (8) to get , the 

inequality following from assumption (A2).  Then substitute  in Eqs. (6) 

and (7) and combine them with Eq. (10) to get a system of  equations in the  

variables , to wit, 

 , , 

 , , (11) 

 , 
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(11), it follows that  are not functions of .  To find the so-

lution for  and , substitute  in Eq. (9) and solve it and Eq. (5) for  and 

, yielding  and .  Finally, substitute  and  in, say, Eq. (8) 

and solve it for  to get .  The preceding shows that Eqs. (5)–(10) are recursive 
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 Now observe that by assumption (A1) and Eq. (5) that , 

.  And finally, recall that .  As 

, it follows that .  The deductions in this and the preceding paragraph are sum-

marized in the following lemma. 

 

Lemma 1. Under assumptions (A1)–(A3), Eqs. (5)–(10) are recursive,  are 

not functions of , , and . 

4.  Fundamental Comparative Statics 
The process of constructing the fundamental comparative statics of problem (1) begins by recalling 

the definition of the parameter vector  given in Eq. (2).  The gradient operator with respect  is 

then defined as 
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 , , (19) 

 , , (20) 

 , . (21) 

The  GCDs in Eqs. (19)–(21) possess the null property discussed in §1, seeing as 

 for  and . 

 Given the  GCDs in Eqs. (19)–(21), one can apply Theorem 1 of Partovi and 

Caputo (2006, 2007) to derive the fundamental, constraint-free, negative semidefinite 

 comparative statics matrix (CSM) for problem (1), say .  Using 

the heretofore established notation, Theorem 1 of Partovi and Caputo (2006, 2007) asserts that the 

typical element of  takes the form 
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for .  The proof of the ensuing proposition is given in Appendix I. 
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results of Saha (1994, p 114 and Lemma 1), because, as mentioned in §1, the AH model he con-

templated is considerably less general than that contemplated here.  Moreover, in contrast to the 

claim of Saha (1994, p. 114), the properties of do not depend on the concavity of the pro-

duction function, seeing as it was not needed to prove Proposition 1. 

 Crucially, the CSM is observable, as it consists of the levels or partial derivatives of the 

consumption rates, total labor employed, the rates of output, and the variable inputs, which are 

typically available or derivable from demand and supply functions that make use of such data.  

This is important because it permits, for the first time, full empirical scrutiny of the canonical 

model’s basic empirically testable implications.   

 Because (i) the form of the CSM depends on the GCDs in Eqs. (19)–(21), (ii) the 

GCDs depend on the basis vectors in Eqs. (15)–(17), and (iii) the basis vectors are not unique, it 

follows that  is not unique.  Theorem 5 of Partovi and Caputo (2006) acknowledges this fact 

and provides the formal relationship between GCDs and CSMs when they are formed using dif-

ferent sets of basis vectors.  A key deduction is that because two sets of basis vectors for the tangent 

hyperplane to the level set of the constraint functions in parameter space provide a description 

fully equivalent to each other, the two CSMs derived from them are congruent.  Not only that, the 

CSMs are essentially equivalent in the sense that they are of equal rank and the semidefiniteness 

of one implies that of the other.  Even so, it should be noted that congruency does not imply simi-

larity of economic implications, because the two CSMs can be quite different with respect to such 

matters as observability and empirical verification, a point further elaborated upon below. 

 It is important to understand that no problems arise because a CSM is not unique.  Indeed, 

the fact that a CSM is not unique is a strength of the Partovi and Caputo (2006) methodology, as 

is now explained.  If, for example, theoretical matters are the main focus, the freedom in the choice 

of basis vectors allows one to choose those that yield a form of the CSM that has the most intuitive, 

or natural, economic interpretation.  If, on the other hand, interest lies in empirical testing of the 

negative semidefiniteness of a CSM, then one could choose a set of basis vectors that yield a form 

of the CSM that includes only those endogenous and exogenous variables for which one has the 

data to carry out such an empirical test. 

 The southeast  block along the diagonal of  gives the basic com-

parative statics of the production side of the AH model, as it involves the uncompensated (or par-

tial) derivatives of the output supply and variable input demand functions with respect to their 

prices  The negative semidefiniteness of the block implies that the laws of output supply and factor 

demand hold, and its symmetry yields a generalization of the prototypical reciprocity relations of 

the price-taking, profit-maximizing model of a firm.  The proof of Proposition 1 shows that be-

cause the output supply and variable input demand functions are independent of exogenous in-

come, the block does not involve compensated derivatives.  But this is simply an implication of 

the separability of the production and consumption decisions indicated in Lemma 1. 

 The northwest  block along the diagonal of  gives the fundamental comparative 

statics of consumption and leisure.  It shows that for the goods and leisure, the form of the com-

pensated comparative statics with respect to the prices of the goods is identical to that of the neo-

classical Slutsky matrix.  This is to be expected, as the prices of the goods enter the canonical AH 

and neoclassical budget constraints identically.  For the wage rate, on the other hand, the compen-

sation must account for the fact that the wage rate does not enter in a prototypical fashion, owing 

to the fact that an AH uses its own labor to produce its outputs.  This complication can be seen in 

the  column of the submatrix.  Indeed, the compensation takes an even more complicated form 

when it pertains to leisure, as shown by the additional term in the  row and column of the 
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submatrix.  For these reasons, the reciprocity relations are more complicated than their neoclassical 

counterparts as well. 

 The last four off-diagonal submatrices give the remaining reciprocity relations of the ca-

nonical AH model, and they too provide a more general, and thus richer, set of compensated com-

parative statics than those extant, for the reasons already mentioned.  To sharpen these reciprocity 

results, assume that , , and .  It then follows from the symmetry of that 

.  This asserts that the market good consumed by an AH is normal 

if and only if the consumption of the market good increases as the market price of the good pro-

duced by the AH increases.  Another such reciprocity relation follows from the aforesaid symmetry 

as well, and is given by .  It asserts that the market good consumed 

by an AH is normal if and only if the consumption of the market good decreases as the market 

price of the non-labor input used by the AH increases.  Taken together, the two results show that 

an increase in the market price of the good produced by the AH has the opposite effect on the 

consumption of the market good as does an increase in market price of the non-labor input used 

by the AH, i.e., . 

 Several, but not all, of the properties of  can be derived by way of more traditional 

approaches.  Take the southeast  block along the diagonal of .  Its neg-

ative semidefiniteness can be derived by appealing to the (i) recursive nature of the AH model 

given in Lemma 1, (ii) convexity of the implied AH indirect profit function in the output and input 

prices, and (iii) envelope theorem.  Similarly, one can derive the negative semidefiniteness of the 

northwest  block along the diagonal of  by (i) forming identities between the AH con-

sumption functions and the Marshallian consumption functions using the AH indirect profit func-

tion, (ii) using the chain rule and the Slutsky equation on said identities, and (iii) invoking the 

negative semidefiniteness of the Slutsky matrix.  That said, the symmetry between the AH con-

sumption functions and the output supply and input demand functions contained in the remaining 

four off-diagonal submatrices of  does not appear to be readily deduced using the preceding 

approaches.  This is because they work on but a portion of the AH model, in contrast to the meth-

odology of Partovi and Caputo (2006).  For this reason, the negative semidefiniteness of  

cannot be deduced using the above approaches either. 

 In closing, note that Appendix II briefly considers the preceding results for a perturbation 

of the AH model that includes a staple good, defined as a good which is produced and consumed. 

5.  Conclusion 
By employing the differential comparative statics method of Partovi and Caputo (2006), the fun-

damental comparative statics of the canonical AH model have been derived.  In doing so, the 

underlying reason for the compensation scheme has been illuminated, and because the method of 

derivation is general, it may be readily applied to extensions of the canonical model.  What is more, 

because the fundamental comparative statics are measurable with the usual types of data employed 

by empiricists, they form the basic, empirically testable properties of the AH model.  Therefore, 

for the first time, a full empirical test of the basic behavioral properties of the canonical AH model 

can be carried out. 
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6.  Appendix I 
Proof of Proposition 1.  First note that the fundamental comparative statics matrix , the 

typical element of which is given by Eq. (22), is negative semidefinite by Theorem 1 of Partovi 

and Caputo (2006).  Then apply Eq. (22) to Eqs. (5)–(8) using the GCDs defined in Eqs. (19)–(21) 

to derive the elements of : 

 

 (24) 

 , (25) 

, (26) 

 , (27) 

 , (28) 

 , (29) 

 , (30) 

 , (31) 

 . (32) 

By Lemma 1,  are not functions of , hence the partial de-

rivatives of  with respect to  vanish identically, thereby re-

sulting in a considerable simplification of Eqs. (24)–(32), and furthermore, implying that, e.g., 

, .  Moreover, as  by Lemma 1, it may be di-

vided out of Eqs. (24)–(32), thereby yielding the negative semidefinite matrix .  The rank 

conclusion follows from Theorem 4 of Partovi and Caputo (2006).    Q.E.D. 
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7.  Appendix II 
A worthwhile perturbation of the AH model defined by Eq. (1) would be to include a set of so-

called staple goods, defined as goods which are produced and consumed by an AH.  In order to 

keep matters relatively simple, and in an effort not to become bogged down with too many for-

malities akin to that leading up to Proposition 1 and Appendix I, assume that the first good con-

sumed by an AH is a staple.  This assumption implies the existence of a third constraint, namely, 

, which asserts the price of consuming the staple good is the market price of 

the good produced by an AH.  Because this constraint does not involve a decision variable, it does 

not affect the first-order necessary conditions given in Eqs. (5)–(10).  But for the purpose of com-

parative statics, the third constraint changes a few things, as is now demonstrated. 

 In addition to the two normal directions to the level set of the constraint functions in pa-

rameter space given in Eqs. (13) and (14), there is now a third normal direction, namely, 

 . (33) 

Because the only solution to  is , the normal vectors are lin-

early independent.  By the implicit function theorem, the constraints , , define 

an -dimensional manifold in .  This implies that the dimension of the tan-

gent hyperplane to the level set of the three constraint functions is , and hence that 

 basis vectors are required for its complete description.  In contrast to the AH model 

defined by Eq. (1), one fewer basis vector is required in the present version of the model, seeing 

as the same parameters appear in both but the present version has one more constraint involving 

the parameters, namely, . 

 The following  vectors lie in the tangent hyperplane to the level set of the 

constraint functions in parameter space 

 , , (34) 

 , , (35) 

 , , (36) 

seeing as  for  and .  Because the 

only solution to the linear system  is the null vector , the 

 vectors  are linearly independent and thus form a basis for the said hyperplane. 

 Using Eq. (12) and Eqs. (34)–(36) in the definition of a GCD given in Eq. (18), the CGDs 

in the present case are given by 

 , , (37) 

 , , (38) 

 , . (39) 

The  GCDs in Eqs. (37)–(39) possess the null property in view of the fact that 

 for  and .  Comparison of the GCDs in Eqs. (19)–(21) and 

Eqs. (37)–(39) shows that there are two small differences, as is now explained. 
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 The only meaningful difference between the two sets of GCDs occurs in .  Com-

paring Eq. (37) to Eq. (19) shows the assumption that the first output produced is also consumed 

manifests itself in differential form by the addition of .  This is not unexpected.  The 

constraint  resulting from the staple good assumption implies that a change in  requires 

a concomitant change in  that must be fully analogous to the compensated change given in Eq. 

(38) in order to leave the budget constraint unaffected.  The other difference between the two sets 

of GCDs is that the index in Eq. (38) omits the term  and thus the GCD 

.  But this is precisely the GCD that was added in forming  in the 

present context, as noted above.  Thus the change in the set of GCDs resulting from the assumption 

that output one is a staple good amounts to removing  from the original set 

of GCDs in Eqs. (19)–(21) and inserting it into  in Eq. (37).  This change also reveals the 

form of the GCDs if it were instead assumed that a subset of the goods produced by an AH were 

staple goods.  Furthermore, because the change in the GCDs under the present stipulation is limited 

to , it is left as an exercise for the reader to derive the CSM in this case. 
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