
   

 

 

 

Volume 44, Issue 1

 

Recursive Nash-in-Nash bargaining solution

 

Xiaowei Yu 

Charles River Associates

Keith Waehrer 

Secretariat Economists

Abstract
The standard Nash-in-Nash bargaining solution is commonly applied in a number of policy applications. However, the

Nash-in-Nash framework does not capture renegotiations on off-equilibrium paths or contingent contracts, and as a

result, in some situations the predictions of standard Nash-in-Nash are counterintuitive. Thus, we propose a new

bargaining solution for interdependent bilateral negotiations, which we call the recursive Nash-in-Nash bargaining

solution. The main difference between this bargaining framework and the standard Nash-in-Nash is in the treatment of

the disagreement point. In the recursive Nash-in-Nash bargaining solution, the disagreement payoffs are the outcomes

of bargaining with knowledge of the disagreement rather than the equilibrium outcomes as in the standard Nash-in-

Nash. We show that under some assumptions, the recursive Nash-in-Nash bargaining solution is the same as the

Shapley value for the corresponding game in characteristic function form or the more general Myerson value for the

corresponding game in partition function form.
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1. Introduction 

The Nash bargaining model (Nash (1950)) has been widely used as a framework for analyzing 

markets involving bargaining in a range of applications.1,2 Nash’s seminal paper considers a two-

person game, but many economic problems involve multiple interdependent pairs of bilateral 

bargaining, such as buyer-seller networks and wage negotiations between a firm and its individual 

workers. One commonly used extension of the Nash bargaining solution to the problem of bilateral 

bargaining between multiple pairs is the “Nash equilibrium in Nash bargains,” or “Nash-in-Nash” 

bargaining (Collard-Wexler, Gowrisankaran, and Lee (2019)). It was first proposed by Horn and 

Wolinsky (1988) to study horizontal mergers given a buyer-seller network and has been applied in 

various economic environments.3 

The Nash-in-Nash bargaining solution is defined as the set of bilateral bargaining outcomes 

consistent with all other bilateral bargaining outcomes, assuming that in the case of an out-of-

equilibrium bilateral disagreement all other bargaining outcomes remain at the proposed 

equilibrium outcomes. That is, each agent believes that all other pairs of bargaining outcomes will 

remain as predicted by the equilibrium even if there is an out-of-equilibrium breakdown in 

bargaining between one pair of agents. This may be a good approximation of real-world bargaining 

outcomes in some situations, but in other situations, agreements of interdependent bargaining pairs 

may be expected to change if one pair’s negotiation breaks down unexpectedly. We propose an 

alternative extension of the Nash bargaining solution to the multiple bilateral bargaining problems 

to treat these situations, which we call the “recursive Nash-in-Nash” bargaining solution.4  

The recursive Nash-in-Nash bargaining solution is similar to the standard Nash-in-Nash in that 

each bargaining pair splits the surplus bilaterally according to the Nash bargaining solution. The 

difference is in the disagreement payoffs. In the recursive Nash-in-Nash framework, a bargaining 

pair’s disagreement payoffs are determined assuming that all other bargaining pairs negotiate their 

agreements expecting the disagreement. We show that under certain assumptions, the recursive 

Nash-in-Nash bargaining solution is the same as the Shapley value (Shapley (1953)) of a 

corresponding game in characteristic function form5 or the Myerson value of a corresponding game 

in partition function form (Myerson (1977b)) if there are externalities across different groups of 

bargaining agents.6 These results simplify the quantification of outcomes using these models for 

applied work.  

 
1  In many applications, the Nash bargaining solution is used to identify the division of surplus assuming total gains from trade 

do not vary over bargaining terms. In such applications, it would probably be more straightforward to describe the outcome 

as involving splitting the surplus in a constant proportion. In such situations the only operative axioms of the four axioms 

characterizing the Nash bargaining solution as summarized in the literature (see, for example, Osborne and Rubinstein 

(1990), Chapter 2) are the symmetry and efficiency axioms. However, we will follow the practice in the applied literature and 

refer to these as involving a Nash bargaining solution. 

2  See, e.g., FTC v. ProMedica Health Sys., Inc., 2011-1 Trade Cas. (CCH) ¶ 77,395 (N.D. Ohio Mar. 29, 2011), FCC (2011), 

Willig (2016), and Farrell (2017).  

3  See, e.g., Draganska, Klapper and Villas-Boas (2010), Crawford and Yurukoglu (2012), Grennan (2013), Gowrisankaran, 

Nevo, and Town (2015), Ho and Lee (2017), Crawford, Lee, Whinston and Yurukoglu (2018), and Sheu and Taragin (2021). 

4  A similar bargaining solution called Nash-in-Shapley was independently defined by Froeb, Mares, and Tschantz (2019). That 

work came to the authors’ attention after early drafts of this paper. 

5  This result is related to the observations made in Myerson (1977a), Jackson and Wolinsky (1996), Feldman (1996), and 

Navarro (2007) that the Shapley value or the more general Myerson value is the unique allocation rule that satisfies the 

“component balance” condition and the “fairness” condition.    

6  In the literature, the Myerson value for network games refers to the value derived in Myerson (1977a) (see e.g., Navarro and 

Perea (2013)), where he generalizes the Shapley value to games with a network structure; the Myerson value for partition 
 



  

 

 

As illustrated in four examples below, the recursive Nash-in-Nash bargaining solution 

generates materially different outcomes than the standard Nash-in-Nash solution. These 

differences matter in a number of policy contexts. For example, recently, in the US Copyright 

Royalty oral hearing for Web V, experts for both Pandora and SoundExchange made reference to 

an earlier version of this paper7 and its results when debating whether the appropriate model to 

apply is Nash-in-Nash, Shapley value, or Myerson value. In Fiedler (2020)’s paper discussing 

regulation of the health care market, he recognizes the issue of Nash-in-Nash in the setting of a 

health insurer bargaining with complementary providers and agrees that the recursive Nash-in-

Nash bargaining solution has some appealing features in that setting. Boshoff et al. (2023) 

discusses the difference between Nash-in-Nash and Nash-in Shapley (a bargaining solution similar 

to recursive Nash-in-Nash) in the context of antitrust review of vertical mergers.8  

The bargaining literature recognizes that the standard Nash-in-Nash disagreement points may 

not be a good assumption for all real-world situations.9 Collard-Wexler et al. (2019) explained that 

Nash-in-Nash solutions may not emerge if there are renegotiations upon disagreement, agreements 

have contingencies, or there are large complementarities on one side of the buyer-seller network. 

The recursive Nash-in-Nash bargaining solution provides a more plausible alternative in these 

settings than the standard Nash-in-Nash solution. 

Our paper is also related to the literature that establishes the equivalence between non-

cooperative extensive form games and the Shapley value or Myerson value.10 De Fontenay and 

Gans (2014) showed the equilibrium payoffs of a non-cooperative pairwise bargaining game with 

externalities are the same as the Myerson value of a related cooperative game. The recursive Nash-

in-Nash can be viewed as a reduced form bargaining solution of their extensive form game.   

The remainder of the paper is organized as follows. Section 2 provides the definition of the 

recursive Nash-in-Nash bargaining solution and shows the equivalence between the Shapley value 

and the Myerson value under certain assumptions. Section 3 uses examples to illustrate the main 

differences between the recursive Nash-in-Nash and the Nash-in-Nash bargaining solutions. 

Section 4 presents concluding remarks. The proofs are in the Appendix. 

2. Model and Results 

We provide the main notation in this section and the rest in the Appendix. Let � ൌ  ሼ1, . . . ,݊} 

denote the set of agents and let ݃ denote the set of agent pairs who bargain with each other, where ݃ can be viewed as an undirected network such that if agents ݅ ∈ � and ݆ ∈ � negotiate with each 

other, then the unordered pair ݆݅ is in ݃. The pairwise negotiations are over lump-sum transfers.  

Following Collard-Wexler et al. (2019), we assume that each agent's profits without transfers 

(called “gross profits” henceforth) do not depend on the transfers negotiated without them, but 

they can depend on whether agreements are reached in those negotiations. As in Collard-Wexler 

et al. (2019), we take gross profits at all the subsets of bilateral negotiations in ݃ as primitives of 

 
function form games refers to the value derived in Myerson (1977b) (see e.g., Navarro (2007)), where he generalizes the 

Shapley value to games with externalities across coalitions. We use the term “Myerson value” to refer to the latter one, i.e., 

the Myerson value for games in partition function form.  

7  Yu and Waehrer (2019) 

8  As mentioned in footnote 4, the Nash-in-Shapley and the recursive Nash-in-Nash bargaining solutions were independently 

proposed. 

9  See, e.g., Raskovich (2003) and Ho and Lee (2019). 

10  See, e.g., Stole and Zweibel (1996), Navarro and Perea (2013), and Bruegemann, Gautier, and Menzio (2019). 



  

 

 

the game. Let �: ሼ݃ᇱ|݃′ ⊆ ݃ሽ → ܴ|ே| be the gross profit function.11 It is a vector-valued function 

whose ݅th entry �ሺ݃′ሻ is agent ݅'s gross profit if the set of agreements reached is ݃′ ⊆ ݃.  In 

practice, agents often negotiate over “actions” that affect their gross profits, such as how much 

investment to make and the characteristics of the goods being traded. �ሺ݃′ሻ can be viewed as the 

gross profits when all the agreements in ݃′ include bilaterally efficient actions. We abstract away 

from how the actions are determined and focus on the surplus division. 

A component in our setting is a bargaining group. Let ܳ be the set of �’s components in ݃. 

Note that ܳ is a partition of �.  

Definition. Given a set of agents �, a set of bilateral negotiations ݃  and a gross profit function �: ሼ݃ᇱ|݃′ ⊆ ݃ሽ → ܴ|ே|, the recursive Nash-in-Nash bargaining solution is a vector of payoffs ܷ  ∈ܴ|ே| such that  ܷ∈ௌ     ൌ�ሺ݃ሻ∈ௌ ,∀ܵ ∈ ܳ,                      ሺݐ݊݁݊݉ܥ ܾ݈ܽܽ݊ܿ݁ሻ 
 ܷ െ ܷ\ ൌ ܷ െ ܷ\ 

,∀݆݅ ∈ ݃,                                    ሺݏݏ݁݊ݎ݅ܽܨሻ 
 ܷ  ܷ\

, ܷ  ܷ\
,∀݆݅ ∈ ݃,              ሺ�݊݀݅ݕݐ݈݅ܽ݊݅ݐܽݎ ݈ܽݑ݀݅ݒሻ 

where ܷ\ ൌ �ሺ∅ሻ if |݃| ൌ 1 and otherwise ܷ\ is the recursive Nash-in-Nash bargaining 

solution given agents �, bilateral negotiations ݃\݆݅ and the gross profit function �.  

The component balance condition requires that the total payoff of a bargaining group is the 

sum of its members’ gross profits. That is, there are no net transfers across different bargaining 

groups.12 The fairness condition, as is commonly assumed in the literature, requires that every pair 

of negotiating agents splits the gains from trade equally.13 The individual rationality condition 

requires that each agent’s payoff in an agreement is at least as high as that agent’s disagreement 

payoff.14 When |݃| ൌ 1, the recursive Nash-in-Nash solution is the same as the Nash bargaining 

solution. 

The recursive Nash-in-Nash is defined recursively and the disagreement payoffs ܷ\
 and ܷ\

 in the fairness and individual rationality conditions are the recursive Nash-in-Nash 

bargaining payoffs when ݆݅ is removed from the set of negotiations in ݃ assuming all the other 

contracts are “renegotiated” without this pair’s agreement. This is the key difference between 

recursive Nash-in-Nash and Nash-in-Nash, where ܷ\
 and ܷ\

 in the fairness and individual 

 
11  We use | ∙ | to denote the size of a set. For example, |݃| denotes the number of negotiating pairs in ݃. 

12  This condition is commonly assumed in the literature (sometimes also called “component efficient”). See, e.g., Myerson 

(1977a), Jackson and Wolinsky (1996), and Navarro (2007). 

13  See, e.g., Myerson (1977a), Jackson and Wolinsky (1996), Navarro (2007), and De Fontenay and Gans (2014). One could 

define recursive Nash-in-Nash with unequal bargaining powers as has been done in Nash-in-Nash bargaining models, but if 

one were to do so, the equivalence with the Shapely and Myerson Values would not hold as those two concepts apply their 

own form of fairness. 

14  While satisfaction of the individual rationality condition here is necessary for the equivalence results (Propositions 1 and 2), 

it is possible to define the recursive Nash-in-Nash without it. Disagreement at stages in the bargaining can simply be part of 

the outcome that would be anticipated as part of the disagreement payoffs. One possibility would be to assume that given a 

set of bargaining pairs ݃′ ⊆ ݃ if the component balance and fairness conditions would result payoffs that violate individual 

rationality for a set of bargaining pairs ݂ ⊆ ݃′, then ܷᇲ ൌ ܷᇲ\ or alternatively ܷᇲ ൌ ሺ1/|݂|ሻ∑ ܷᇲ\∈ . As we show in 

an example in the Appendix, either of these assumptions will result in a solution to the recursive bargaining game even when 

individual rationality does not hold at every recursive stage. Though such a solution might involve disagreement even for the 

full set of bargaining pairs ݃. 



  

 

 

rationality conditions would be replaced by ݅’s and ݆’s payoffs assuming all the other contracts 

remain the same as if  ݅ and ݆ have reached an agreement. 

The recursive Nash-in-Nash bargaining solution can be solved by induction on the number of 

negotiating pairs starting from one pair of negotiating agents in ݃ and increasing the number of 

negotiating agent pairs one by one. Consider the example shown in Figure 1 for an illustration of 

the induction on the number of negotiation pairs. There are two pairs of negotiations in ݃: 1 and 

3, and 2 and 3. If 1 and 3 disagree, then the set of negotiations becomes ݃ ଵ, and if 2 and 3 disagree, 

the set of negotiations becomes ݃ଶ. We denote the empty set of negotiations by ݃ଷ. One can first 

solve the recursive Nash-in-Nash bargaining solutions for the negotiation sets ଵ݃ ( ܷభ , ݅ ൌ 1, 2, 3) 

and ݃ଶ ( ܷమ , ݅ ൌ 1, 2, 3). Then the recursive Nash-in-Nash solution for the negotiations in ݃ 

( ܷ, ݅ ൌ 1,2,3ሻ can be solved using the solutions for ଵ݃ and ݃ଶ as disagreement payoffs in the 

fairness and individual rationality conditions. For example, the disagreement payoffs for the 

negotiation between 1 and 3 in ݃ are ଵܷ\ଵଷ ൌ ଵܷభ and ܷଷ\ଵଷ ൌ ܷଷభ. 

 

Figure 1: An example of a set of bilateral negotiations � and its subsets �, � and �. 

We now show that under certain assumptions, the recursive Nash-in-Nash bargaining solution 

is the same as the Shapley value or the more general Myerson value.  

Define the restriction of a network ݃ to a coalition ܵ as ݃|ௌ ൌ ሼ݆݅ ∈ ݃: ݅ ∈ ܵ and ݆ ∈ ܵሽ.  
Assumption 1. (No externality across bargaining groups) �ሺ݃′ሻ ൌ �ሺ݃ᇱ|ௌᇲሻ, ∀݃ᇱ ⊆ ݃,∀݅ ∈�, where ܵᇱ denotes the component of � in ݃′ that ݅ belongs to. 

This assumption is used in Proposition 1 but not in Proposition 2. It says that any agent’s gross 

profit depends only on the set of agreements made in their bargaining group. In other words, the 

agreements made in one bargaining group do not have externalities on agents in other bargaining 

groups. For example, in Figure 1, this assumption implies that �ଵሺ ଵ݃ሻ ൌ �ଵሺ݃ଷሻ and �ଶሺ݃ଶሻ ൌ�ଶሺ݃ଷሻ. Externalities on agents in the same bargaining group are allowed. For example, �ଵሺ݃ሻ and �ଵሺ݃ଶሻ can be different (due to externality from agents 2 and 3’s agreement on agent 1) while 

satisfying Assumption 1. 

Assumption 2. (Monotonicity) ∀݃ᇱ ⊆ ݃,∀݆݅ ∈ ݃′, ∑ �ሺ݃′ሻ∈ே   ∑ �ሺ݃′\݆݅ሻ∈ே . 

This assumption says that for any subset of agreements, the agents’ total gross profit is weakly 

higher with these agreements than with one less agreement. For example, in Figure 1, this 

assumption implies that the three agents’ total gross profit given ݃  is weakly higher than that given ଵ݃ or ݃ଶ, which in turn is weakly higher than that given ݃ଷ. This assumption is used in Proposition 

1 to guarantee positive gains from trade. 

Proposition 1. Given a set of agents �, a set of bilateral negotiations ݃, and a gross profit 

function �: ሼ݃ᇱ|݃′ ⊆ ݃ሽ → ܴ|ே| that satisfies Assumptions 1 and 2, the recursive Nash-in-Nash 

bargaining solution exists and it is the same as the Shapley value of the cooperative game ሺ�,  ሻݒ
in characteristic function form, where ݒሺܵሻ ൌ  ∑ �ሺ݃|ௌሻ∈ௌ , ∀ܵ ⊆ �.  

3

1 2� ൌ ሼ,ሽ
3

1 2� ൌ ሼሽ
3

1 2� ൌ ሼሽ
3

1 2� ൌ ∅



  

 

 

The cooperative game ሺ�,  ሻ can be interpreted as follows. We want to allocate to each agentݒ

in � the total value of the grand coalition, which is the total gross profit of all agents when all the 

agreements in ݃ are reached, i.e., ݒሺ�ሻ ൌ ∑ �ሺ݃ሻ∈ே . The value of each coalition ܵ is the total 

gross profit of its members when only the subset of agreements within ܵ, ݃|ௌ, is reached. 

Proposition 1 says that the Shapley value of this game is the same as the recursive Nash-in-Nash 

bargaining solution given Assumptions 1 and 2.  

In some real-world situations, Assumption 1 is not satisfied, and the recursive Nash-in-Nash is 

not the same as the Shapley value. Consider the following example adapted from Myerson 

(1977b). Assume the set of negotiations is ݃ଶ in Figure 1. It has only one subset, ݃ଷ ൌ ∅. If �ଶሺ݃ଶሻ ് �ଶሺ݃ଷሻ, then Assumption 1 is not satisfied. This may happen when agents 1 and 2 are 

competing retailers, agent 3 is a supplier, and the agreement between retailer 1 and the supplier 

has negative externality on retailer 2. The recursive Nash-in-Nash bargaining solution given ݃ଶ is 

different from the Shapley value for the corresponding game ሺሼ1,2,3ሽ,  మሻ. This can be seen byݒ

comparing agent 2’s payoffs. In the recursive Nash-in-Nash bargaining solution, agent 2’s payoff 

is simply �ଶሺ݃ଶሻ by the component balance condition, whereas agent 2’s Shapley value depends 

on both �ଶሺ݃ଶሻ and �ଶሺ݃ଷሻ since it is the average of agent 2’s marginal contributions over all 

possible orders by which the agents arrive at a hypothetical market. 

In these situations with externalities across bargaining groups, the recursive Nash-in-Nash 

bargaining solution is the same as the more general Myerson value for a corresponding game in 

partition function form if the Myerson value satisfies the individual rationality condition. The 

following definitions largely follow those in Myerson (1977b). 

Given a set of agents �, let ܲܶ be the set of partitions of � and let ܮܥܧ be the set of embedded 

coalitions; that is, the set of coalitions together with specifications of how the other agents are 

assigned.15 Formally: ܮܥܧ ൌ ሼሺܵ,ܳሻ|ܵ ∈ ܳ ∈ ܲܶሽ. 16 

A game in partition function form is defined as a vector ݓ ∈ ܴ|ா|, where ݓௌ,ொ (the ሺܵ,ܳሻ-
component of ݓ) is interpreted as the wealth, measured in units of transferable utility, which 

coalition ܵ would have created if all the agents are aligned into coalitions of partition ܳ. 

Given a network ݃ and a partition ܳ, let ݃|ܳ be the subnetwork of ݃ such that all negotiations 

in ݃ between agents in different coalitions in ܳ are removed from network ݃. That is, ݃|ܳ ൌ⋃ ݃|்்∈ொ . (Note that in our notation, ݃|ܣ and ݃| are not the same.)  

Proposition 2. Given a set of agents �, a network of potential bilateral negotiations ݃ and a 

gross profit function �: ሼ݃ᇱ|݃′ ⊆ ݃ሽ → ܴ|ே|, if the recursive Nash-in-Nash solution exists then it is 

the same as the Myerson value of the corresponding cooperative game in partition function form ݓ, where ݓ ∈ ܴ|ா|  and ݓௌ,ொ ൌ ∑ �ሺ݃|ܳሻ∈ௌ , ∀ሺܵ,ܳሻ ∈  .ܮܥܧ

Similar to the game ሺ�,   can be interpreted as follows. We wantݓ ሻ, the cooperative gameݒ

to allocate to each agent in � the total value of the grand coalition, which is the total gross profit 

of all agents when all the agreements in ݃ are reached, i.e., ݓே,ሼேሽ ൌ ∑ �ሺ݃ሻ∈ே . The value of a 

coalition ܵ given partition ܳ is the total gross profit of its members when only the subset of 

 
15  For example, if � ൌ ሼ1,2,3ሽ, then for �, ܲܶ ൌ ቄ൛ሼ1ሽ, ሼ2ሽ, ሼ3ሽൟ, ൛ሼ1,2ሽ, ሼ3ሽൟ, ൛ሼ1ሽ, ሼ2,3ሽൟ, ൛ሼ1,3ሽ, ሼ2ሽൟ, ൛ሼ1,2,3ሽൟቅ 
16  For the example in the previous footnote, ܮܥܧ ൌ{(ሼ1ሽ, ൛ሼ1ሽ, ሼ2ሽ, ሼ3ሽൟ), (ሼ2ሽ, ൛ሼ1ሽ, ሼ2ሽ, ሼ3ሽൟ), (ሼ3ሽ, ൛ሼ1ሽ, ሼ2ሽ, ሼ3ሽൟ), 

(ሼ1,2ሽ, ൛ሼ1,2ሽ, ሼ3ሽൟሻ, ሺሼ3ሽ, ൛ሼ1,2ሽ, ሼ3ሽൟሻ, (ሼ1ሽ, ൛ሼ1ሽ, ሼ2,3ሽൟሻ, ൫ሼ2,3ሽ, ൛ሼ1ሽ, ሼ2,3ሽൟ൯, ൫ሼ1,3ሽ, ൛ሼ1,3ሽ, ሼ2ሽൟ൯, ሺሼ2ሽ, ൛ሼ1,3ሽ, ሼ2ሽൟ), ൫ሼ1,2,3ሽ, ൛ሼ1,2,3ሽൟ൯ሽ. 



  

 

 

agreements “divided” by ܳ, ݃|ܳ, is reached. Proposition 2 says that the Myerson value of this 

game is the same as the recursive Nash-in-Nash bargaining solution if it exists.  

Since the Myerson value was proposed as a solution to cooperative games, it does not 

necessarily satisfy the individual rationality condition typically assumed for bargaining solutions. 

In a numeric example in the Appendix, we show parameter ranges of the primitives where the 

Myerson value satisfies or does not satisfy the individual rationality condition in the definition of 

the recursive Nash-in-Nash solution.  

3. Examples 

The following examples are based on a similar structure: a set of symmetric manufacturers that 

all negotiate with all members of a set of symmetric retailers. The gross profit of each manufacturer 

is െܿሺݔሻ, where ݔ is the number of successful negotiations with downstream firms. The gross 

profit of each retailer is ܴሺݕ,  is the number of successful negotiations with ݕ ሻ, whereݖ

manufacturers by this firm and ݖ is the number of successful negotiations by other retailers. 

Assume ܿሺ0ሻ ൌ 0 and ܴሺ0, ሻݖ ൌ 0 for any ݖ.  

Example 1. Suppose there is one manufacturer and two retailers such that ܿሺ1ሻ ൌ ܿሺ2ሻ ൌ  ܭ

(i.e., ܭ is like a fixed cost) and ܴሺ1,1ሻ ൌ ሺ2ሻ and ܴሺ1,0ሻݎ ൌ ሺ2ሻݎሺ1ሻ, where 2ݎ  ሺ1ሻݎ  ܭ 
0.  

In the Nash-in-Nash framework, retailer 1’s and 2’s payments to the manufacturer, ݐଵ and ݐଶ, 

satisfy the following equal split of surplus conditions for the negotiation between the manufacturer 

and retailer ݅: ሺݐଵ  ଶݐ െ ሻܭ െ ൫ݐ െ ൯ܭ ൌ ሺݎሺ2ሻ െ ሻݐ െ 0, ݅, ݆ ൌ 1, 2, 

where the left-hand side of the equation is the manufacturer’s gains from trade with retailer ݅ and 

the right-hand side is retailer ݅’s gains from trade. Solving the two equations results in each retailer 

with payoff equal to half of its revenue, ݎሺ2ሻ/2, and the manufacturer’s payoff equal to ݎሺ2ሻ െ  .ܭ

Note that the retailers’ profits and payments do not depend on the fixed cost ܭ. Another 

characteristic of the standard Nash-in-Nash solution is that the retailers’ payoffs do not depend on 

the degree to which the two retailers are substitutes, which relates to their incremental contribution 

to total revenue, 2ݎሺ2ሻ െ  ሺ1ሻ. The disagreement payoffs in recursive Nash-in-Nash bargainingݎ

framework assume renegotiation. Therefore, the manufacturer’s disagreement payoff is ሺݎሺ1ሻ െܭሻ/2, and a retailer’s disagreement payoff is 0. With these different disagreement payoffs, an equal 

split of the surplus implies, ሺݐଵ  ଶݐ െ ሻܭ െ ሺݎሺ1ሻ െ ሻ/2ܭ ൌ ሺݎሺ2ሻ െ ሻݐ െ 0, ݅ ൌ 1, 2. 

Solving these two equations implies the recursive Nash-in-Nash bargaining payoffs are ሺ4ݎሺ2ሻ െ ሺ1ሻݎ െ ሺ2ሻݎሻ/6 for each retailer and ሺ2ܭ  ሺ1ሻݎ െ  ሻ/3 for the manufacturer.  Inܭ2

contrast to the Nash-in-Nash solution, here the retailers’ payoffs depend on the fixed cost ܭ. In 

addition, the recursive Nash-in-Nash retailers’ payoffs are decreasing in ݎሺ1ሻ holding ݎሺ2ሻ 
constant and thus, decrease in the substitutability of the retailers. 

Example 2. Suppose there are three manufacturers and one retailer who needs inputs from 

three manufacturers to sell anything. Assume ܿሺݔሻ ൌ 0 for all ݔ, ܴሺ3,0ሻ ൌ ݎ  0 and ܴሺݕ, 0ሻ ൌ 0 

if ݕ ൏ 3. The standard Nash-in-Nash will predict that no agreement can be reached despite there 

being positive surplus from agreement as the retailer needs to pay each manufacturer 2/ݎ, which 

totals 32/ݎ in payments, larger than the revenue. Therefore, the Nash-in-Nash solution may not be 

a good extension of the Nash bargaining solution in multilateral situations with large 



  

 

 

complementarities on one-side of the market.17 For example, the Copyright Royalty Board judges 

in the Web IV and STARS III proceedings found that the three major record companies were 

“must-haves” for interactive and noninteractive streaming services and for satellite radio service 

Sirius XM.18  

Example 3. Now assume two manufacturers and two retailers. For the standard Nash-in-Nash 

solution the manufacturers’ payoffs are ܴሺ2,2ሻ െ ܴሺ1,2ሻ െ ܿሺ1ሻ and the retailers’ payoffs are ܴሺ1,2ሻ െ ሾܿሺ2ሻ െ ܿሺ1ሻሿ. This solution has the unusual property that the manufacturers’ payoffs do 

not depend on ܿሺ2ሻ and the retailers’ payoffs do not depend on ܴሺ2,2ሻ. In a model with an 

investment stage before the bargaining stage where investments would result in lower costs or 

higher revenue in the following stage, the standard Nash-in-Nash solution implies some perverse 

investment incentives.  

Assuming that revenue and cost functions are consistent with the individual rationality 

condition,19 the recursive Nash-in-Nash solution20 involves manufacturers’ payoffs of  ൫ܴሺ2,2ሻ െ ܴሺ1,1ሻ൯/3 ൫ܴሺ2,2ሻ  ܴሺ2,0ሻ൯/6 െ ൫ܿሺ2ሻ  ܿሺ1ሻ൯/3, 

and retailers’ payoffs of ൫ܴሺ2,2ሻ  ܴሺ1,1ሻ൯/3 െ ൫ܴሺ2,0ሻ െ ܴሺ2,2ሻ൯/6െ ൫2ܿሺ2ሻ െ ܿሺ1ሻ൯/3. 

These payoffs include ܿሺ2ሻ for the manufacturers and ܴሺ2,2ሻ for the retailers, thus avoiding the 

potential issues described above with the standard Nash-in-Nash solution.21 

Example 4. Now assume one manufacturer and ݊  2 symmetric retailers. Assume ܴሺݕ, ሻݖ ൌݎሺݕ  ݕ ሻ ifݖ ൌ 1. In other words, the gross profit for each retailer with an agreement is ݎሺݔሻ if 
there are ݔ successful negotiations between the manufacturer and the retailers. Assume ݎݔሺݔሻ െܿሺݔሻ  0 and is non-decreasing in ݔ. The Nash-in-Nash payoff for the manufacturer is ሺ݊/2ሻ ∗൫ݎሺ݊ሻ െ ܿሺ݊ െ 1ሻ൯  ሺ݊/2 െ 1ሻ ∗ ܿሺ݊ሻ. When there are three or more retailers, this solution has 

the unusual property that the manufacturer’s payoff is increasing in the cost ܿሺ݊ሻ.  
As this example satisfies Assumptions 1 and 2, the recursive Nash-in-Nash solution here is the 

same as the Shapley value. Using the Shaley value formula, the manufacturer’s payoff is ൣ∑ ൫݅ݎሺ݅ሻ െ ܿሺ݅ሻ൯ୀଵ ൧/ሺ݊  1ሻ, decreasing in the cost ܿሺ݊ሻ. 
4. Concluding Remarks 

We introduce a new bargaining solution for interdependent bilateral negotiations that account 

for renegotiation on off-equilibrium paths or contingent contracts. We show using examples that 

the recursive Nash-in-Nash bargaining solution may give more reasonable predictions than the 

Nash-in-Nash bargaining solution in some scenarios and that under certain assumptions that 

solution corresponds to the Shapley Value or under other conditions corresponds to the more 

general Myerson value.  

The monotonicity condition (Assumption 2) is used to ensure that the individual rationality 

conditions are satisfied given Assumption 1. Slikker (2007) uses a similar condition. This 

 
17  As mentioned in the Introduction, this point is also discussed in Collard-Wexler et al. (2019). 

18  Web IV Determination, Federal Register (2016); SDARS III Determination, Federal Register (2018). 

19  This issue is explored in an example in the Appendix. 

20  Solving for the recursive Nash-in-Nash solution in this example by hand is computationally challenging, but we provide the 

Mathematica code to do the derivation for this example. The code is straightforward to adapt for an arbitrary structure and is 

available here: http://waehrer.net/RNnNdownloads.htm. 

21  It is also notable that the retailers’ payoffs include the term ൫ܴሺ2,0ሻ െ ܴሺ2,2ሻ൯, which is the negative externality that is 

imposed on the other downstream firm when it goes from zero to two successful negotiations with manufacturers. 



  

 

 

assumption allows some negative externalities, but they cannot be so large that the total profits 

decrease due to one bargaining pair’s agreement. However, in multilateral bargaining situations 

where additional agreements imply increased competition between participants, monotonicity may 

fail to hold if consumers (the beneficiaries of the competition) are not players in the bargaining 

game. 

A limitation of the results is the lack of conditions for guaranteeing the existence of the solution 

in the case with externalities across bargaining groups. However, as demonstrated in Example 2, 

there are cases where a solution to the standard Nash-in-Nash does not exist but the recursive 

Nash-in-Nash exists. We explore existence in an example in the Appendix and find that in that 

specific example, the recursive Nash-in-Nash bargaining solution can exist even when 

Assumptions 1 and 2 do not hold. In addition, as described in footnote 14 and implemented in the 

example in the Appendix, it is possible to generalize the recursive Nash-in-Nash solution to 

incorporate anticipated equilibrium disagreements such that a solution exists when individual 

rationality does not hold everywhere.  
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Appendix 

The following notations mostly follow Jackson (2010) and Navarro (2007). A network in this 

game is a set of bilateral negotiations. We use ݃\݆݅ to indicate the subnetwork of a network ݃ such 

that it is identical to ݃ except that ݆݅ ∈ ݃ is removed.  

A path in a network ݃  between agents ݅  and ݆  is a sequence of agents ݅ ଵ, … , ݅ such that ݅ ݅ାଵ ∈݃ for each ݇ ∈ ሼ1, … ܭ, െ 1ሽ, with ݅ଵ ൌ ݅ and ݅ ൌ ݆, and such that each agent in the sequence ݅ଵ, … , ݅ is distinct. ݅ and ݆ are connected in a network ݃ if there is a path between them in ݃. ݅ is 

connected in ݃ if ∃݆ ് ݅ ∈ � such that ݅ and ݆ are connected in ݃. A network is connected if there 

is a path between any two agents of the network. 

A subset ܵ ⊆ � is called a coalition. A coalition ܵ is a component of � in ݃ if: (1) any two 

agents in ܵ are connected in ݃, (2) any two agents such that only one of them is in ܵ are not 

connected. 

1. Proof of Proposition 1 

To prove Proposition 1, we will first prove a few lemmas. 

Lemma 1. Let ܵ ൌ ሼ1, 2, … , ܷ ሽ be a set of agents and ݃ be a connected network of ܵ. Letݏ ∈ܴ|௦| be the solution to the following set of linear equations: ܷ െ ܷ ൌ � , ∀݆݅ ∈ ݃, ݅ ൏ ݆                                                                ሺ1ܣሻ  ܷ∈ௌ ൌ �,                                                                                                       ሺ2ܣሻ 
where �,� ∈ ܴ. If ܷ exists then it is unique. 

Proof. For any ݇, ݈ ∈  ܵ, there is a path from ݇ to ݈ since ݃ is connected. Let the path be ݇ଵ, … , ݇ such that ݇ଵ ൌ ݇ and ݇ ൌ ݈. Using (A1) repeatedly along the path, we have  ܷ െ ܷ  ൌ ൫ܷభ െ ܷమ൯  ൫ܷమ െ ܷయ൯  ⋯ ൫ܷషభ െ ܷ൯                              

 ൌ Δభమ  Δమయ ⋯ Δషభ ≡ � ,                                             ሺ3ܣሻ 
where Δ ≡ െΔ for any ݆݅ ∈ ݃ with ݅  ݆. 



  

 

 

There may be other paths from ݇ to ݈, but if ܷ exists then ܷ െ ܷ are the same regardless of 

the path used for the above calculation. 

If ܷ exists, then it is the solution to the following set of linear equations: ቐ ܷ െ ܷାଵ ൌ �,ାଵ, ݉ ൌ 1, … , ݏ െ 1,                             ሺ4ܣሻ ܷ∈ௌ ൌ �,                                                                                         ሺ5ܣሻ  
This is because (A1) can be derived from (A4) for any ݆݅ in ݃ and Eq. (A4) can be derived 

from Eq. (A1) for any ݉ ൌ 1, … , ݏ െ 1. 

 (A4) and (A5) can be written in matrix form as  ܤ ܷ ൌ �,                                                                                ሺ6ܣሻ 
where � is a vector with ݏ components such that � ൌ �,ାଵ for ݉ ൌ 1, … , ݏ െ 1 and � ൌ �, 

for ݉ ൌ ܤ ;ݏ ൌ ൛ܾ,ൟ,∈ௌ is an ݏ-by-ݏ matrix such that all components are zero except that ܾ ,  ൌ
1, ܾ,ାଵ ൌ െ1 for ݉ ൌ 1, . . . , ݏ െ 1 and ܾ௦, ൌ 1 for ݉ ൌ 1, . . . ,  .ݏ

Let ܥ ൌ  ൛ܿ,ൟ,∈ௌ be an ݏ-by-ݏ matrix such that ܿ,  ൌ  ሺݏ െ ݆ሻ/ݏ for ݆  ݏ  െ 1 and ݅   ݆, ܿ,  ൌ  െ݆/ݏ for ݆  ݏ  െ 1 and ݅   ݆, and ܿ, ൌ ݆ for ݏ/1 ൌ ݅ and ݏ ൌ 1, . . . , ܤ Note that .ݏ ∗  ܥ

equals the identity matrix. Therefore, ܤ is invertible. Hence, (A6) has a unique solution and thus 

if ܷ exists then it is unique. ∎ 

Lemma 2. ܵℎሺݒᇱሻ െ ܵℎ൫ݒᇱ\൯ ൌ ܵℎሺݒᇱሻ െ ܵℎ൫ݒᇱ\൯, ∀݃ᇱ ⊆ ݃,∀݆݅ ∈ ݃′. 
Proof.  ∀݃′ ⊆ ݃, ݆݅ ∈ ݃′, define a cooperative game in characteristic function form ሺ�,  ොሻ asݒ

follows: ݒොሺܵሻ ൌ ᇱሺܵሻݒ െ ܵ∀,ᇲ\ሺܵሻݒ ⊆ �. By the linearity of Shapley value, ܵℎ൫ݒො൯ ൌܵℎሺݒᇱሻ െ ܵℎ൫ݒᇱ\൯, ∀݅ ∈ �.  ∀ܵ ⊆ � such that only one of ݅ and ݆ is in ܵ, ݃′|ௌ  ൌ ሺ݃′\݆݅ሻ|ௌ and thus ݒොሺܵሻ ൌ ᇱሺܵሻݒ െݒᇱ\ሺܵሻ ൌ ∑ �ሺ݃′|ௌሻ∈ௌ െ ∑ �൫ሺ݃′\݆݅ሻ|ௌ൯∈ௌ ൌ 0.  By the symmetry property of the Shapley 

value, ܵℎ൫ݒො൯ ൌ ܵℎሺݒොሻ. Therefore, ܵℎሺݒᇱሻ െ ܵℎ൫ݒᇱ\൯ ൌ ܵℎሺݒᇱሻ െ ܵℎ൫ݒᇱ\൯.∎ 

Lemma 3. Suppose Assumption 1 (no externality across bargaining groups) holds. Then ∑ ܵℎሺݒᇱሻ ൌ ∑ �ሺ݃′ሻ∈∈ , ∀݃ᇱ ⊆ ܥ∀,݃ ∈ ܳᇱ. 
Proof.  Take an arbitrary ݃′ ⊆ ܥ ,݃ ∈ ܳᇱ, ݅ ∈ ᇱሻݒFirst, we will show that ܵℎሺ .ܥ ൌܵℎ൫ݒᇱ|൯. Consider ݅’s marginal contribution in game ሺ�,  ᇲሻ. When adding ݅ to a coalition, theݒ

gross profits of the agents in other bargaining groups do not change and the gross profits of the 

agents in ݅’s bargaining group change in the same way as if the game is ൫�,  ᇱ|൯ by Assumptionݒ

1. Similarly, in game ൫�,  ᇱ|൯, when adding ݅ to a coalition, the gross profits of the agents inݒ

other bargaining groups do not change by Assumption 1. Therefore, ݅’s marginal contribution to 

any coalition is the same in ሺ�, ,�ᇲሻ and ൫ݒ  ᇱ|൯. Hence, ݅’s Shapley values in these two gamesݒ

are the same. 

Second, we will show that ∑ ܵℎ൫ݒᇱ|൯∈ ൌ ∑ �ሺ݃′|ሻ∈ . In game ൫�,  ᇱ|൯, the marginalݒ

contribution of an agent ݆ who is not in ܥ to any coalition is simply their gross profit �ሺ݃′|ሻ by 

the definition of ݒᇱ|. Therefore, the Shapley value of these agents are simply their gross profits 

given the set of agreements ݃′|. Since the sum of all agents’ Shapley value is their total gross 

profits given agreements ݃′|, we have ∑ ܵℎ൫ݒᇱ|൯∈ ൌ ∑ �ሺ݃′|ሻ∈ . 

Lastly, ∑ �ሺ݃′|ሻ∈ ൌ ∑ �ሺ݃′ሻ∈  by Assumption 1, and we have shown that ∑ ܵℎሺݒሻ∈ ൌ ∑ ܵℎ൫ݒ|൯∈ . Therefore, ∑ ܵℎሺݒᇱሻ ൌ ∑ �ሺ݃′ሻ∈∈ .∎ 



  

 

 

Lemma 4. Suppose Assumptions 1 (no externality across bargaining groups) and 2 

(monotonicity) hold. Then ܵℎሺݒᇱሻ  ܵℎሺݒᇱ\ሻ and ܵℎሺݒᇱሻ  ܵℎሺݒᇱ\ሻ, ∀݃ᇱ ⊆ ݃,∀݆݅ ∈݃′. 
Proof. Take an arbitrary ݃ᇱ ⊆ ݃ and ݆݅ ∈ ݃′. Let ܥ be the bargaining group that ݆݅ is in given ݃′. Firstly, note that a coalition’s total gross profit is the same in games ሺ�, ,�ᇱ) and ሺݒ  ᇱ\) ifݒ

the coalition does not include both ݅ and ݆. This is because the only difference between the two 

games is whether agreement ݅ ݆ is possible and a coalition without both ݅ ݆ does not allow ݅ ݆ to reach 

an agreement.  

Secondly, the total gross profit of a coalition ܵ with both ݅ and ݆ in ሺ�,  ᇱ) is weakly largerݒ

than in ሺ�,  ᇱ\). This is because the total gross profit of all agents in � is weakly larger givenݒ

agreements ݃′|ௌ than given agreements ݃ᇱ\݆݅|ௌ by Assumption 2 and the total gross profit for 

agents not in coalition ܵ is the same given agreements ݃′|ௌ and ሺ݃ᇱ\݆݅ሻ|ௌ by Assumption 1.  

Given these two observations, ݅’s marginal contribution to any coalition is weakly larger in ሺ�, ,�ᇱ) than in ሺݒ ,�ᇱ\). Therefore, its Shapley value is also weakly larger in ሺݒ ,�ᇱ) than in ሺݒ ᇱሻݒᇱ\). The same arguments can be used to show ܵℎሺݒ  ܵℎሺݒᇱ\ሻ. ∎ 

Proof of Proposition 1. Proof by induction. 

First, we will show that ∀݃ଵ ⊆ ݃ with | ଵ݃| ൌ 1, the recursive Nash-in-Nash bargaining 

solution given �, ଵ݃ and � is the same as the Shapley value for the cooperative game ሺ�,  .భሻݒ
Let the negotiating pair in ଵ݃ be ݅ and ݆. Solving the two equations defined by the component 

balance and fairness conditions, we get ܷభ ൌ �ሺ∅ሻ  ቀ�ሺ ଵ݃ሻ  �ሺ ଵ݃ሻ െ �ሺ∅ሻ െ �ሺ∅ሻቁ /2,  

ܷభ ൌ �ሺ∅ሻ  ቀ�ሺ ଵ݃ሻ  �ሺ ଵ݃ሻ െ �ሺ∅ሻ െ �ሺ∅ሻቁ /2, and ܷ భ ൌ �ሺ ଵ݃ሻ,∀݇ ് ݅, ݆. Moreover,  ൫ ܷభ  ܷభ൯ െ ቀ�ሺ∅ሻ  �ሺ∅ሻቁ                                                                                    ൌ �ሺ ଵ݃ሻ  �ሺ ଵ݃ሻ െ �ሺ∅ሻ െ �ሺ∅ሻ                                                                                    ൌ ቌ�ሺ ଵ݃ሻ  �ሺ ଵ݃ሻ   �ሺ ଵ݃ሻஷ, ቍ െ ቌ�ሺ∅ሻ  �ሺ∅ሻ   �ሺ ଵ݃\݆݅ሻஷ, ቍ,         

where the last equality uses Assumption 1. Therefore, ൫ ܷభ  ܷభ൯ െ ቀ�ሺ∅ሻ  �ሺ∅ሻቁ  0 by 

Assumption 2. Hence, ܷభ is the recursive Nash-in-Nash bargaining solution given �, ଵ݃ and �. 

Solving the Shapley value for the cooperative game ሺ�,  భሻ yields that the Shapley value is theݒ

same as ܷభ. 

Now suppose we have shown that ∀݃ ⊆ ݃ with |݃| ൌ ݉, the recursive Nash-in-Nash 

bargaining solution given �,݃ and � is the same as the Shapley value for the cooperative game ሺ�, ,�ሻ. By Lemmas 2-4, the Shapley value for the cooperative game ሺݒ శభሻ, ∀݃ାଵݒ ⊆ ݃ 

with |݃ାଵ| ൌ ݉  1 satisfies component balance, fairness and individual rationality. By Lemma 

1, the recursive Nash-in-Nash bargaining solution is unique if it exists. Therefore, the Shapley 

value for game ሺ�,  ,݃,� ሻ is the same as the recursive Nash-in-Nash bargaining solution givenݒ

and �.∎ 

2. Proof of Proposition 2 

To prove Proposition 2, we will first prove Lemmas 5 and 6.  

Lemma 5. Φሺݓᇱሻ െ Φ൫ݓᇱ\൯ ൌ Φሺݓᇱሻ െ Φ൫ݓᇱ\൯, ∀݃ᇱ ⊆ ݃,∀݆݅ ∈ ݃′. 



  

 

 

Proof. Similar to the proof of Lemma 2, ∀݃ᇱ ⊆ ݃,∀݆݅ ∈ ݃′, define a cooperative game in 

partition function form ݓ as follows: ݓෝௌ,ொ ൌ ௌ,ொᇱݓ െݓௌ,ொᇱ\ ,∀ሺܵ,ܳሻ ∈  By the linearity of .ܮܥܧ

the Myerson value, Φ൫ݓෝ ൯ ൌ Φሺݓᇱሻ െ Φ൫ݓᇱ\൯, ∀݇ ∈ �.  ∀ሺܵ,ܳሻ ∈ ܳ|′݃ ,ܳ such that ݅ and ݆ are in different elements of ܮܥܧ ൌ ሺ݃′\݆݅ሻ|ܳ, and thus ݓෝௌ,ொ ൌ ௌ,ொᇱݓ െݓௌ,ொᇱ\ ൌ ∑ �ሺ݃′|ܳሻ∈ௌ െ ∑ �൫ሺ݃′\݆݅ሻหܳ൯∈ௌ ൌ 0.  By the symmetry property of 

the Myerson value (implied by Value Axiom 1 of Myerson (1977b)), Φ൫ݓෝ ൯ ൌ Φሺݓෝ ሻ. 
Therefore, Φሺݓᇱሻ െ Φ൫ݓᇱ\൯ ൌ Φሺݓᇱሻ െ Φ൫ݓᇱ\൯. ∎ 

Lemma 6. For any ݃ᇱ ⊆ ݃ and for any ܥ ∈ ܳᇱ, ∑ �ሺݓᇱሻ ൌ ∑ �ሺ݃′ሻ∈∈ . 

Proof. Recall the definition of decomposability in Myerson (1977b): Given ܳ ∈ ܲܶ and ݓ ∈ܴ|ா|, we say that ݓ is ܳ-decomposable if and only if: ∀൫ ሚܵ, ෨ܳ൯ ∈ ௌሚ,ொ෨ݓ,ܮܥܧ ൌݓௌሚ∩ௌ,ொ෨∩ொௌ∈ொ , 

where for any ܳ ∈ ܲܶ and ෨ܳ ∈ ܲܶ, ෨ܳ ∩ ܳ ∈ ܲܶ is defined as ෨ܳ ∩ ܳ ൌ ሼ ሚܵ ∩ ܵ| ሚܵ ∈ ෨ܳ , ܵ ∈ܳ, ሚܵ ∩ ܵ ് ∅ሽ. Also recall Corollary 1 of Myerson (1977b): If ݓ ∈ ܴா is ܳ-decomposable, then, 

for any ܵ ∈ ܳ, ∑ Φሺݓሻ∈ௌ ൌ  .ௌ,ொݓ

Note that ܳᇱ is a partition of � and ݃′|ܳ ൌ ݃′|ܳ ∩ ܳᇱ, ∀ܳ ∈  ᇱ is ܳᇱ-decomposableݓ .ܶܲ

because for any ሺܵ,ܳሻ ∈ ௌ,ொᇱݓ ,ܮܥܧ ൌ�ሺ݃′|ܳሻ∈ௌ ൌ�൫݃′หܳ ∩ ܳᇱ൯∈ௌ ൌ   �൫݃′หܳ ∩ ܳᇱ൯∈ௌ∩∈ொᇲ ൌ  ௌ∩,ொ∩ொᇲᇱ∈ொᇲݓ . 

By Corollary 1 of Myerson (1977b), for any ܥ ∈ ܳᇱ, ∑ Φ∈ ሺݓᇱሻ ൌ ,ொᇲᇱݓ
. Since ݓ,ொᇲᇱ ൌ∑ �ሺ݃′|ܳᇱሻୀ ൌ ∑ �ሺ݃′ሻୀ , we have  ∑ Φሺݓᇱሻ ൌ ∑ �ሺ݃′ሻ∈∈ .∎ 

Proof of Proposition 2. This proof is similar to the proof of Proposition 1. By Lemma 1, the 

recursive Nash-in-Nash bargaining solution is unique if it exists, and it is given recursively by the 

component balance and fairness conditions. By Lemmas 5 and 6, the Myerson values of the 

corresponding cooperative games satisfy the component balance and fairness conditions. 

Therefore, the recursive Nash-in-Nash bargaining solution is the same as the Myerson value if it 

exists.∎ 

 

3. Example 3 when Assumptions 1 and 2 are violated 

In order to explore the issue of when the individual rationality condition holds and the 

implications of it failing to hold, consider a variation of Example 3. Alter the assumptions of 

Example 3 to add the following structure to the revenue and cost functions. Assume ܿሺݔሻ ൌ 0 for 

all ݔ and ܴሺݕ, ሻݖ ൌ maxሼ3ݕ െ ,ݖ� 0ሽ, where 3  �  0.  

This structure is inconsistent with Assumption 1 (No externalities across bargaining groups). 

Note that ሼሺ1,3ሻ, ሺ2,4ሻሽ includes two bargaining groups and the payoff for (1,3) depends on 

whether there is agreement by (2,4). For �  1, this structure is also inconsistent with Assumption 

2 (Monotonicity) as ܴሺ2,0ሻ  ܴሺ2,1ሻ  ܴሺ1,2ሻ. 
However, for 9/5  �  1, the component balance and fairness conditions solve for payoffs 

at each recursive stage that satisfy individual rationality and thus the recursive Nash-in-Nash 

solution exists and is the same as the Myerson Value even though Assumptions 1 and 2 are not 



  

 

 

satisfied. For these parameter values, the payoffs to the manufacturers is 3 െ 2/3� and the retailers 

is 3 െ 4/3�.22  

For �  9/5, not all individual rationality conditions hold. Labeling the manufacturers 1 and 

2 and the retailers 3 and 4, the set of bargaining pairs is ݃ ൌ ሼሺ1,3ሻ, ሺ1,4ሻ, ሺ2,3ሻ, ሺ2,4ሻሽ. For   9/5 ൏�  9/4, the individual rationality condition fails for ݃′ ⊆ ݃ such that |݃′| ൌ 3.23 For example, 

for ݃′ ൌ ሼሺ1,3ሻ, ሺ1,4ሻ, ሺ2,3ሻሽ, individually rationality fails for bargaining pair ሺ1,4ሻ because the 

negative externality associated with inclusion of retailer 4 and having to compensate 4 to 

participate can be avoided through disagreement between 1 and 4. Thus, for these parameter values 

the recursive Nash-in-Nash as defined in the main text does not exist. 

However, as suggested in footnote 14, it is possible to incorporate the anticipation of 

disagreement into the recursive Nash-in-Nash solution. One such assumption is to assume that if 

individual rationality fails for bargaining pairs ݂ ⊆ ݃′, then the payoffs are defined such that ܷ ᇱ ൌܷᇱ\. Implementing this approach for 9/5 ൏ �  9/4, results in payoffs of ሺ15 െ 4�ሻ/4 for 

manufacturers and ሺ9 െ 4�ሻ/4 for retailers. Notice that at � ൌ 9/4, the retailers’ payoff is zero 

and thus, with an additional assumption regarding anticipated disagreements a solution for the 

recursive Nash-in-Nash can be recovered. 

Now consider the standard Nash-in-Nash solution for this example. Example 3 shows the 

solution as ܴሺ2,2ሻ െ ܴሺ1,2ሻ െ ܿሺ1ሻ for manufacturers and ܴሺ1,2ሻ െ ሾܿሺ2ሻ െ ܿሺ1ሻሿ for retailers. 

Applying the structure on gross profits assumed here, these payoffs are 3 for manufacturers and 

max ሼ3 െ 2�, 0ሽ for retailers. Thus, for the standard Nash-in-Nash, the retailer’s payoff is zero 

when 3  �  3/2. 
 

 
22  These solutions were derived and individual rationality conditions checked using the Mathematica code available here: 

http://waehrer.net/RNnNdownloads.htm.  

23  For �  9/4, the individual rationality condition fails at additional recursive stages. 


