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Abstract
The widely applied method for measuring assortativeness in a transferable utility matching game is the matching

maximum score estimation proposed by Fox (2010). This article reveals that by combining unmatched agents,

transfers, and individual rationality conditions with sufficiently large penalty terms, it's possible to identify the

coefficient parameter of a single common constant, i.e., matching costs in the market.
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1 Introduction

One of the most well-known methods for measuring matching assortativeness was devel-
oped by Fox (2010, 2018). Although the method allows researchers to flexibly incorporate
additional inequalities from equilibrium conditions, the additional information that helps
identification is unknown. This article focuses on pairwise stability in a transferable utility
(TU) matching model and investigates the identification by adding unmatched agents, trans-
fer data, and individual rationality (IR) conditions, which are available in many empirical
applications. This article theoretically and numerically reveals that using unmatched agents,
transfers, and individual rationality conditions with sufficiently large penalty terms makes
it possible to identify the coefficient parameter of a single common constant, i.e., matching
costs in the market.

First, transfer data is known to improve identification power practically if it is available.
The working paper version of Fox and Bajari (2013) uses bidding price data in FCC Spec-
trum Auction in a single market setting. They numerically confirm that if the number of
agents is small or the variance of errors is large, bidding price data generated from a taton-
nement process drastically reduces the bias and RMSE (the root of mean squared error) of
an estimated single parameter. Akkus et al. (2015) use acquisition prices between buyer
firms and target firms as transfer data. Pan (2017) uses CEO compensations between CEOs
and firms. Appendix A of Akkus et al. (2015) shows Monte Carlo evidence that adding
transfers not only improves the accuracy of estimation but also enables researchers to iden-
tify the coefficient of a non-interacted term. In another strand, there is some theoretical
and empirical evidence that using unmatched agents helps identification. Fox et al. (2018)
show nonparametric identification results in two-sided matching model. Section 5 of their
paper proves that the distribution of unobserved complementarities conditional on observed
characteristics can be recovered if each firm on each side is part of exactly one match or is
unmatched in each feasible assignment. Otani (2021) uses unmatched firms to identify and
estimate matching costs in a one-sided one-to-many coalitional mergers in Japanese shipping
industry with Monte Carlo simulations. This article shows how these data affect construction
of inequalities for identification and estimation.

Second, individual rationality (IR, henceforth) conditions, i.e., the binary choice infor-
mation are necessary for identification of a fixed cost (Bresnahan and Reiss, 1990). In the
TU matching game, IR conditions capture whether agents choose to stay matched or un-
matched. This article shows under what conditions matching fixed costs can be identified
and estimated.

2 Model

2.1 Baseline matching model

I consider a two-sided one-to-one TU merger matching game in a single market. Let Nb and
Ns be the sets of potential finite buyers and sellers respectively. Let b = 1, · · · , |Nb| be buyer
firms and let s = 1, · · · , |Ns| be seller firms where | · | is cardinality. Let Nm

b denote the
set of ex-post matched buyers and N u

b denote that of ex-post unmatched buyers such that



Nb = Nm
b ∪ N u

b and Nm
b ∩ N u

b = ∅. For the seller side, define N u
s and Nm

s as the set of
ex-post matched and unmatched sellers such that Ns = Nm

s ∪ N u
s and Nm

s ∩ N u
s = ∅. Let

Mm be the sets of all ex-post matched pairs (b, s) ∈ Nm
b × Nm

s . Let M denote the set of
all ex-post matched pairs (b, s) ∈ Mm and unmatched pairs (b̃, ∅) and (∅, s̃) for all b̃ ∈ N u

b

and s̃ ∈ N u
s where ∅ means a null agent generating unmatched payoff.

Each firm can match at most one agent on the other side, so |Nm
b | = |Nm

s |. The matching
joint production function is defined as f(b, s) = Vb(b, s) + Vs(b, s) where Vb : M → R and
Vs : M → R. The net matching values for buyer b and seller s are defined as Vb(b, s) =
f(b, s)− pb,s and Vs(b, s)+ pb,s, where pb,s ∈ R+ is the equilibrium merger price paid to seller
firm s by buyer firm b and pb∅ = p∅s = 0. For scale normalization, I assume Vb(b, ∅) = 0 and
Vs(∅, s) = 0 for all b ∈ Nb and s ∈ Ns.

The matching allocation is incentive compatible given equilibrium merger prices if each
agent maximizes its profit. The allocation is feasible if agents’ excess demand for counterpart
agents equals zero. Under some technical assumptions, Azevedo and Hatfield (2018) show
that the matching allocation with equilibrium prices is a competitive equilibrium if the allo-
cation is incentive compatible given the equilibrium prices and is feasible. The competitive
equilibrium is equivalent to the stable matching.1 At competitive equilibrium, each buyer
maximizes Vb(b, s) across seller firms, whereas each seller maximizes Vs(b, s) across buyer
firms.

Specifically, the stability conditions for buyer firm b ∈ Nb and seller firm s ∈ Ns are as
follows:

Vb(b, s) ≥ Vb(b, s
′) ∀s′ ∈ Ns ∪ ∅, s′ ̸= s, (1)

Vs(b, s) ≥ Vs(b
′, s) ∀b′ ∈ Nb ∪ ∅, b′ ̸= b.

Based on Equation (1) and equilibrium price conditions pb′,s ≤ pb,s and pb,s′ ≤ pb′,s′

in Akkus et al. (2015), I construct the inequalities for matches (b, s) ∈ M and (b′, s′) ∈
M, (b′, s′) ̸= (b, s) as follows:

f(b, s)− f(b, s′) ≥ pb,s − pb,s′ ≥ pb,s − pb′,s′ , (2)

f(b′, s′)− f(b′, s) ≥ pb′,s′ − pb′,s ≥ pb′,s′ − pb,s,

Vs(b, s)− Vs(b
′, s) ≥ 0,

Vs′(b
′, s′)− Vs(b, s

′) ≥ 0,

where pb′,s and pb,s′ are unrealized equilibrium merger prices that cannot be observed in the
data. The last two inequalities cannot be derived from the data because the researchers
cannot observe how the total matching value f(b, s) is shared between buyer b and seller s.

2.2 Transfer and unmatched data.

In many empirical applications, researchers do not obtain data on transfers and unmatched
firms. The minimum number of possible inequalities is discussed in Result 1.

1See Proposition 3.3 of Galichon (2018) for reference.



Result 1. Suppose that researchers obtain (A) transfer data pbs for matched buyer firm b

and seller firm s for all b ∈ Nm
b and s ∈ Nm

s , and (B) unmatched data about N u
b and

N u
s with their observed characteristics. Let nCk be the number of combinations of k objects

from n objects, and nPk be the number of permutations, representing the different ordered
arrangements of a k-element subset of an n-set.2 Then, the followings hold:

(i) Researchers can construct the following inequalities for matches (b, s) ∈ M and (b′, s′) ∈
M, (b′, s′) ̸= (b, s):

f(b, s)− f(b, s′) ≥ pb,s − pb′,s′ . (3)

The minimum number of total inequalities is |Mm|+|Nu

b
|+|Nu

s |P2.

(ii) If the data does not contain (A), researchers can construct the following inequalities
for matches (b, s) ∈ M and (b′, s′) ∈ M, (b′, s′) ̸= (b, s):

f(b, s) + f(b′, s′) ≥ f(b, s′) + f(b′, s). (4)

The minimum number of total inequalities is |Mm|+|Nu

b
|+|Nu

s |C2.

(iii) If the data does not contain (B), researchers can construct Inequality (4) for matches
(b, s) ∈ Mm and (b′, s′) ∈ Mm, (b′, s′) ̸= (b, s). The minimum number of total inequal-
ities is |Mm|P2.

(iv) If the data does not contain (A) and (B), researchers can construct Inequality (3) for
matches (b, s) ∈ Mm and (b′, s′) ∈ Mm, (b′, s′) ̸= (b, s). The minimum number of total
inequalities is |Mm|C2.

2.3 Individual rationality conditions

IR conditions are implicitly included in Inequality (3) when transfer data is available because
M restores unmatched buyer b̃ and seller s̃ as (b̃, ∅) and (∅, s̃), respectively. For matched
pair (b, s) ∈ M and unmatched buyer (b̃, ∅) ∈ M, Inequality (3) gives f(b, s) − f(b, ∅) =
f(b, s) ≥ pb,s − pb̃,∅ ≥ pb,s, i.e.,

f(b, s)− pb,s ≥ 0. (5)

Importantly, unlike pairwise inequalities, the IR condition holds for each matched firm on
each side regardless of the availability of transfer data. To distinguish IR conditions from
pairwise inequalities, let IR(Mm) = 2|Mm| = |Mm

b | + |Mm
s | be the number of inequalities

from IR conditions.
Table I summarizes the above results and illustrates a useful configuration of pairwise in-

equalities. Note that |Mm|+|Nu

b
|+|Nu

s |P2 and |Mm|P2 include the same inequalities in IR(Mm).
Section 3 uses the result to demonstrate a necessary modification for identifying matching
costs.

2For reference, nCk = n!
k!(n−k)! and nPk = n!

(n−k)! where ! is a factorial function.



Table I: The minimum number of total inequalities.

Unmatched
Available Unavailable

Transfer
Available |Mm|+|Nu

b
|+|Nu

s |P2 |Mm|P2

Unavailable |Mm|+|Nu

b
|+|Nu

s |C2 + IR(Mm) |Mm|C2 + IR(Mm)

2.4 Matching maximum score estimator

Fox (2010) proposes a maximum score estimator using Inequality (3) or (4). The maximum
score estimator is consistent if the model satisfies a rank order property, i.e., the probability
of observing matched pairs is larger than the probability of observing swapped matched
pairs. I specify f(b, s) as a parametric form f(b, s|X, β) where X is a vector of observed
characteristics of all buyers and sellers and β is a vector of parameters. Given X, one can
estimate β without IR conditions by maximizing the following objective function:

Q(β) =























∑

(b,s)∈M

∑

(b′,s′)∈M,(b′,s′) ̸=(b,s) ✶[f(b, s|X, β)− f(b, s′|X, β) ≥ pb,s − pb′,s′ ]

if transfer data is available,
∑

(b,s)∈M

∑

(b′,s′)∈M,(b′,s′) ̸=(b,s) ✶[f(b, s|X, β) + f(b′, s′|X, β) ≥ f(b, s′|X, β) + f(b′, s|X, β)]

otherwise,

(6)

where ✶[·] is an indicator function. If unmatched data is unavailable, M is replaced with
Mm. If IR conditions are included, Q(β) is modified to the following:

Q̃(β) = Q(β) + λ ·
∑

(b,s)∈Mm

✶[f(b, s|X, β) ≥ 0], λ ≥ 1, (7)

where λ is the importance weight of IR conditions. If λ is larger, the importance of the IR
condition term is larger for the evaluation of Q̃(β). If the transfer data are available, the
correction term is redundant as in Table I, but it does not affect the search for the maximizer
of Q̃(β). Section 3 investigates the importance of λ.

3 IR conditions identify the coefficient parameter of a

constant

The estimation of fixed costs is one of the fundamental tasks in structural empirical studies.
Suppose that researchers want to estimate an additive separable matching cost in a single
market. Let c be the matching cost and assume c < 0 for exposition.3 Following the

3If researchers expect βXbXs to be negative, i.e., the market to generate negative assortative matchings
and want to investigate a subsidy effect inducing matchings, they can assume c > 0 as the subsidy effect.
The logic is the same in the main text.



literature, I specify f(b, s) as follows:

f(b, s) = βXbXs + c · ✶[b ̸= ∅ or s ̸= ∅], (8)

where Xb and Xs are vectors of continuous observable characteristics for buyer b and seller s
and β is a vector of parameters. Note that hypothetical matching cost c exists for unmatched
pairs. Then, Result 2 holds.

Result 2. Suppose that the matching joint production function is specified as (8). Then,

(i) by using pairwise inequalities based only on matched pairs, c cannot be identified via
Q(·);

(ii) in addition to (i), even if transfer data is available, c cannot be identified via Q(·);

(iii) in addition to (i), even if unmatched data is available, the lower bound of c cannot be
identified without IR conditions;

(iv) in addition to (iii), c can be identified only when IR conditions are used with a suf-
ficiently large importance weight via Q̃(β), whether the transfer data is included or
not.

Note that (iv) of Result 2 does not reveal how large the importance weight λ should be.
The appropriate weight of λ depends on the sample sizes of matched and unmatched agents
as a tuning parameter. The working paper version provides detailed numerical experiments
to show the necessity of the weight.

4 Conclusion

This article investigates the identification of a common fixed cost of matching in a TU
matching game. For identification, IR conditions with a sufficiently large importance weight
are necessary unless you have data of both unmatched agents and transfers.

Acknowledgments I thank my advisor Jeremy Fox for his valuable advice. This research
did not receive any specific grant from funding agencies in the public, commercial, or not-
for-profit sectors.

A Proof of results

Proof of Result 1

Proof. I demonstrate (i) because other parts are analogously proven. M restores unmatched
buyer b̃ and seller s̃ as (b̃, ∅) and (∅, s̃), so the size of the set of unmatched pairs is (|N u

b | +
|N u

s |). The number of possible combinations of (b, s) ∈ M and (b′, s′) ∈ M, (b′, s′) ̸= (b, s)



is |Mm|+|Nu

b
|+|Nu

s |C2 and each combination gives two inequalities as in Inequality (3). This
gives

2 ·|Mm|+|Nu

b
|+|Nu

s | C2 = 2
(|Mm|+ |N u

b |+ |N u
s |)(|M

m|+ |N u
b |+ |N u

s | − 1)

2!
=|Mm|+|Nu

b
|+|Nu

s | P2.

(9)

Proof of Result 2

Proof. To prove (i), substituting (8) into (3) gives

βXbXs + c · ✶[b ̸= ∅ or s ̸= ∅] + βXb′Xs′ + c · ✶[b′ ̸= ∅ or s′ ̸= ∅]

≥ βXbXs′ + c · ✶[b ̸= ∅ or s′ ̸= ∅] + βXb′Xs + c · ✶[b′ ̸= ∅ or s ̸= ∅],

where the indicator functions must be 1 for matched pair (b, s) and unrealized matched pair
(b, s′) so that matching cost c is canceled out. Similarly, (ii) is also proved in the same way.

To prove (iii), it is sufficient to consider pairwise inequalities based on an unmatched
pair as the pairwise inequalities of matched pairs are shown above. With transfer data, by
substituting (8) into (3), the pairwise inequalities based on unmatched pairs denoted by
(b̃, ∅) and (∅, s̃) can be reduced to a single inequality as follows:

0 ≥ βXb̃Xs̃ + c− pb̃,s̃,

where pb̃,s̃ = 0. This only provides the upper bound of c as −βXbXs ≥ c. Without transfer
data, the same inequality is derived using (4).

To prove (iv), when transfer data is available, IR condition (5) for matched pair (b, s)
gives

βXbXs + c− pb,s ≥ 0,

whereas, when transfer data is not available, IR condition (5) for matched pair (b, s) gives

βXbXs + c ≥ 0.

Thus, IR condition (5) provides the lower bound of c as c ≥ −βXbXs + pb,s or c ≥ −βXbXs.
Finally, I demonstrate the necessity of λ. In the modified objective function in (7), the

additional term

λ ·
∑

(b,s)∈Mm

1[βXbXs + c ≥ 0],

takes up to λ · |Mm|. However, Q(β) of (7) can take up to either of the numbers in Table I
which are much larger than |Mm|. In finite samples, the part does not need to achieve its
perfect score, so some fractions of pairwise inequalities are not satisfied even at the maximizer
of the objective function. This implies that, if λ and |Mm| are small, the evaluation of IR



conditions is dominated by the number of unsatisfied pairwise inequalities, which can be
larger than |Mm|. Thus, λ must be large enough, corresponding to |Mm|.
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