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Abstract
In this note, we show that two-state continuous time Markov processes can generate empirically plausible distributions

of annual earnings and interest rates. Annual earnings and interest rates in continuous time models are functions of a

path integral over the instantaneous values and therefore continuously distributed. We develop an algorithm computing

the cross-sectional distributions of annual earnings and interest rates. This algorithm can be used to simulate annual

income and interest rates in continuous time models or calibrate the fundamental parameters of the continuous time

Markov processes.
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1 Introduction

Large-scale macroeconomic models that attempt to discover non-linear relations between the

macroeconomy and financial markets are becoming increasingly important. However, solving

these models is often challenging in respect of both analytical and numerical manner. This

gives rise to the need for methods that help solve these large-scale models efficiently. To

this end, continuous time models are often chosen as they often entail insightful closed-form

characterizations of equilibrium outcomes. Even if the closed-form solutions are not available,

continuous time models can be numerically solved faster than their discrete-time representation

counterpart. However, when these continuous time models are brought to the data by means of

calibration or estimation, it is important to match the time frequency of flow variables in the

model with that in the data.1 For example, the distributions of annual earnings and interest rates

must be constructed from the model to match the empirical distributions of annual earnings and

interest rates in the data. In other words, one would need to compute annual earnings and interest

rates in the model and then compare their moments with those in the data. This is important but

sometimes is not well-developed in the economics literature. Though there have been a number

of papers that attempt to match the first and second moment of annual wages in continuous time

models with those in the data (Benhabib et al., 2011; Lise, 2013; Gabaix et al., 2016; Aoki and

Nirei, 2017; Cao and Luo, 2017, Khieu and Wälde, 2023), very little is understood about the

method of computing annual earnings and interest rates and their distributions. Kaplan et al.

(2018) attempt to match higher moments of income changes but not the income level; they use

the Simulated Method of Moments to simulate income from the model at a high frequency and

then aggregate to annual income. To the best of our knowledge, Khieu et al. (2020) are the first

that match higher moments of annual wages using a path integral and its moment generating

function.

In continuous time models, randomness in earnings and interest rates is often modelled

using finite state Markov chains (Elliott and van der Hoek, 2013). At each point in time, the

model generates instantaneous values of earnings and interest rates; when one would like to

obtain monthly or annual earnings and interest rates, a path integral over a certain length of time

is needed. As the continuous time earnings and interest rate processes follow a distribution, so

does the path integral. While the instantaneous values are not observed, we observe the path

integral in the data. In this paper, we show that annual earnings and the logarithm of the gross

annual interest rate are path integrals of the instantaneous values. We then provide a formal

proof that the path integral and hence annual earnings and interest rates generated by two-

state continuous time Markov processes are continuously distributed. We develop an algorithm

computing the distribution of the path integral, which can be used to (i) simulate the distributions

of annual earnings and interest rates when the parameters of continuous time Markov processes

are given or (ii) calibrate the parameters when they are unknown. In the calibration process, our

algorithm allows for simulating the path integral and therefore computing theoretical moments

of annual earnings and interest rates as functions of fundamental parameters of continuous time

Markov processes. These parameters are then to be chosen to minimize the (weighted) sum of

the squared differences between theoretical and empirical moments. Our method simulates the

path integral exactly from the continuous time process and does not imply any discretization

as the Simulated Method of Moments. This is an important advantage to calibrate continuous

time models.

The rest of this paper is structured as follows. Section 2 presents the wealth accumulation

1The matching exercise is not relevant for stock variables like wealth, capital, or default times since they are

accumulated.



process and derives an expression for annual interest rates. Section 3 describes the continuous

time income process and the corresponding path integral. Section 4 presents a formal approach

and an algorithm computing the distribution of the path integral followed by Section 5, which

discusses two applications of the algorithm. Finally, Section 6 concludes.

2 Wealth accumulation and the interest rate process

Let us consider the following wealth accumulation process

da (t) = r (t) a (t) dt, (1)

where a (t) and r (t) represent the stock of wealth and instantaneous interest rate at time t. The

change in wealth equals the instantaneous value of interest r (t) a (t). The instantaneous interest

rate fluctuates between a low value rlow and a high value rhigh according to

dr (t) =
[

rhigh − r(t)
]

dqlow (t) +
[

rlow − r(t)
]

dqhigh (t) , (2)

where rhigh > rlow > 0, and qlow (t) and qhigh (t) are two Poisson processes with corresponding

arrival rates λlow > 0 and λhigh > 0.2 The interest rate jumps from its current level r (t)
to the new level rlow or rhigh when the appropriate increment, dqhigh (t) or dqlow (t) , equals

unity. The arrival rate λlow describes how often the interest rate jumps from the state rlow while

λhigh captures how quickly the interest rate jumps from the state rhigh. A high λlow (or a high

λhigh) means the interest rate jumps from rlow to rhigh (or from rhigh to rlow) relatively quickly.

Intuitively, when an individual leaves the state with a high return relatively quickly over her life

cycle, it implies the time she spends in the low-return state is relatively long. λhigh therefore is

a falling function of λlow. Solving this differential equation (1) for wealth at any future point t1
in time yields

a (t1) = a0e
∫
τ

0
r(t)dt, (3)

where a0 is initial wealth at time t = t0 and t1 := t0 + τ, τ > 0. Let us denote r̃ (t0) as

the per-period interest rate over the time interval T ≡ [t0, t1]. A simple accounting principle

implies that wealth at time t1 is equal to initial wealth a0 plus interest accrued over the time

interval T, r̃ (t0) a0, i.e.

a (t1) = a0 (1 + r̃ (t0)) . (4)

Equating the wealth levels from (3) and (4) yields

r̃ (t0) = e
∫
τ

0
r(t)dt − 1. (5)

Per-period interest rate is constituted by an exponential of a path integral over instantaneous

values. Without loss of generality, let us assume t0 = 0.

Lemma 1 The lower and upper bounds of the per-period interest rate r̃ are respectively given

by

r̃L = eτr
low

− 1, (6)

r̃H = eτr
high

− 1. (7)

2See Cox and Miller (1977) for more background on Poisson processes.



The proof is straightforward. The lowest possible value of the per-period interest rate

materializes when the instantaneous interest rate remains low over the time interval T. This is

given from (6). When the instantaneous interest rate remains high for the entire time interval,

the per-period interest rate is given by (7), which is the highest possible value of r̃, i.e. the

upper bound of r̃.

Lemma 2 The per-period interest rate r̃ is a continuous random variable.

Proof. Trivially, r̃ is random due to randomness in the instantaneous interest rate r.

Equation (5) implies that the logarithm of the gross per-period interest rate is a path integral of

instantaneous interest rate, i.e.

R (0) ≡ ln (1 + r̃ (0)) =

∫

τ

0

r (t) dt. (8)

To show r̃ is a continuous variable, it suffices to show that the logarithm of the gross per-

period interest rate R is continuous. First note that the lower and upper bounds of R are τrlow

and τrhigh, respectively. It now suffices to show that

Pr
(

R (0) ∈ [τrlow, τrlow + ε]
)

> 0, (9)

and that

Pr
(

R (0) ∈ [τrhigh − ε, τrhigh]
)

> 0, (10)

for some arbitrary positive ε ∈ Ξ ≡
[

0, τ(rhigh − rlow)
]

. Consider two cases.

Case 1: r (0) = rlow

Consider the following path integral

R (0) =

∫

τ1

0

rlowdt+

∫

τ

τ1

rhighdt = τrlow + εlow
1 = τrhigh − ε

high
1 ,

where τ1 ≤ τ , εlow
1 ≡ (τ − τ1)

(

rhigh − rlow
)

and ε
high
1 ≡ τ1

(

rhigh − rlow
)

. Note that r(t) can

jump between rlow and rhigh many times between 0 and τ and that τ1 is the total amount of time

that the instantaneous interest rate is in state rlow between 0 and τ . τ1 = τ if r(t) does not jump

between 0 and τ .

Since the instantaneous interest rate jumps from rlow to rhigh with the arrival rate λlow, the

amount of time that r(t) remains at rlow, given that r(0) = rlow, is exponentially distributed

with parameter λlow. As long as τ is finite, there always exists τ1 ≤ τ such that εlow
1 ∈ Ξ and

ε
high
1 ∈ Ξ. This implies (9) and (10).

Case 2: r (0) = rhigh

In this case, let us consider

R (τ) =

∫

τ2

0

rhighdt+

∫

τ

τ2

rlowdt = τrlow + εlow
2 = τrhigh − ε

high
2 ,

where τ2 ≤ τ , εlow
2 ≡ τ2

(

rhigh − rlow
)

and ε
high
2 ≡ (τ − τ2)

(

rhigh − rlow
)

. τ2 is the total amount

of time between 0 and τ that the instantaneous interest rate is in state rhigh. τ2 = τ if r(t) does

not jump between 0 and τ .

The amount of time that r(t) remains at rhigh, given that r(0) = rhigh, is exponentially

distributed with parameter λhigh, which is the arrival rate at which the instantaneous interest rate



jumps from rhigh to rlow. Given that τ is finite, there always exists τ2 ≤ τ such that εlow
2 ∈ Ξ and

ε
high
2 ∈ Ξ. This proves (9) and (10).

Lemmas 1 and 2 imply that the per-period interest rate r̃ is continuously distributed over the

support S=
[

r̃L,r̃H
]

. As the instantaneous interest rate r follows a distribution, the per-period

interest rate r̃ (τ) given from (5) obeys a distribution as well. There are two interpretations for

the distribution of r̃ (τ). First, it is the distribution of the per-period interest rate at time τ of one

individual. Second, when there are sufficiently many individuals that draw the instantaneous

interest rate r(t) independently from an identical distribution, the distribution of r̃ (τ) is the

cross-sectional distribution of the per-period interest rate at time τ . We adopt the second

interpretation.

3 Earnings process and the path integral for earnings

Consider an individual whose instantaneous earnings w(t) evolves according to

dw (t) =
[

wh − w(t)
]

dql(t) +
[

wl − w(t)
]

dqh (t) . (11)

Equation (11) shows that instantaneous earnings that the individual receives at any point t in

time can be eitherwl orwh. The jumps between these two states are described by the increments

dqh (t) and dql (t), where qh (t) and ql (t) are two Poisson processes with constant arrival rates

λh > 0 moving the individual from high income wh to low income wl and λl > 0 moving the

individual from low income wl to high income wh. Let W (0) be the per-period income for the

individual over the time interval T. Per-period income W (0) is a path integral (see Khieu et al.,

2020)

W (0) =

∫

τ

0

w(t)dt. (12)

As instantaneous earnings w(t) follow a distribution governed by two Poisson processes

qh (t) and ql (t), the path integral (12) implies that per-period income W (0) also obeys a

distribution. Note that the path integrals (8) and (12) are of analogy. W (0) is therefore a

continuous random variable. There are two interpretations for the distribution of W (0). First, it

is the distribution of per-period income over the time intervalT of one individual. Second, when

there are sufficiently many individuals that draw instantaneous earningsw(t) independently from

an identical distribution, the distribution ofW (0) is the cross-sectional distribution of per-period

income over the time interval T. The second interpretation is adopted.

Despite the analogy of the path integrals (8) and (12), per-period interest rate and per-period

income are distinct from each other. Per-period interest rate (5) is derived from the wealth

accumulation process and therefore associated with the exponential of a path integral. Per-

period income (12) is simply a time aggregation. This is an important point when it comes to

simulation or calibration.

4 Computing the distribution of the path integrals

The analogy of the path integrals (8) and (12) allows us to work with either one. Let us

now work with (12) since it allows us to compute the distribution of per-period income over

the time interval H ≡ [0,∆]3. Assume at time ti
k
∈ H instantaneous income jumps to state

3Computing the path integral (8) only gives us the logarithm of the gross per-period interest rate. To derive the

distribution of the per-period interest rate, a transformation from logarithm to level is needed.



wi for the k-th time, i ∈ S = {l, h}, k ∈ K = {1, 2, ..., K}, where K is the total times that

instantaneous income jumps to state wi. K is unknown. Let ∆i

k
be the holding time for state wi

starting from time ti
k
. This holding time ∆i

k
is exponentially distributed according to parameter

λi. Per-period income over the time interval [ti
k
, ti

k
+∆i

k
] is given by

W i

k
=

∫

ti
k
+∆i

k

ti
k

widt, i ∈ S, k ∈ K. (13)

As wi is independent of time, (13) is written

W i

k
= wi∆i

k
.

As we are interested in per-period income over the interval H only, let us set ti
k
+∆i

k
= ∆ when

ti
k
+ ∆i

k
> ∆ holds. Therefore, W i

k
is equal to zero when ti

k
= ∆ holds. Per-period income

over the time interval H is therefore given by

W (0) =
∑

S

∑

K

W i

k
. (14)

As an illustration, Figure 1 shows that the individual receives low income wl at time t = 0
and her income remains low for a length of time ∆l

1. Then her income jumps to wh at time th1
and remains high for a length of time ∆h

1 . At time tl3 the individual’s income jumps from high

to low for the third time and remains low for a length of time ∆̄l

3. As tl3 + ∆̄l

3 > ∆, let us set

∆l

3 = ∆ − tl3 and ∆h

3 = 0. Given this realization of instantaneous income, per-period income

over the time interval H is given by

W (0) =
(

W l

1 +W l

2 +W l

3

)

+
(

W h

1 +W h

2 +W h

3

)

,

which is the area under the instantaneous income schedule w(t) and above the horizontal axis

in the time interval [0,∆].4
We are interested in the cross-sectional distribution of annual income for N individuals.

When we assume the sample size N is sufficiently large, the fractions of individuals receiving

low and high income at time t = 0 are respectively given by

ζl =
λh

λl + λh

,

ζh =
λl

λl + λh

≡ 1− ζl.

Thus, the cross-sectional distribution is made of ζlN individuals starting their income path with

a low value and ζhN individuals starting their income path with a high value. The following

algorithm describes a simulation method that generates per-period income of ζlN individuals

receiving low income at time t = 0.

4Figure 1 is an illustration displaying an arbitrary realization of instantaneous income. It may show that ∆i

k
s

are equal for this realization, but it does not imply that ∆i

k
s are equal for all realizations. With another realization,

∆i

k
s might not be equal.



Figure 1 A realization of instantaneous income and the corresponding per-period income

Algorithm 1 (Individuals with low initial income)

1. Draw the length of time ∆l that income remains low from time t = 0. ∆l is exponentially

distributed with parameter λl. There are two possibilities:

⊛ If ∆l ≥ ∆, set ∆l

1 = ∆ and ∆h

1 = 0. The values of total income received during the

time intervals ∆l

1 and ∆h

1 are respectively given by

W l

1 =

∫ ∆l

1

0

wldt, (15)

W h

1 =

∫ ∆

∆−∆h

1

whdt. (16)

Total income received over the time interval H is therefore given by

W (0) = W l

1 +W h

1 . (17)

⊛ If ∆l < ∆, i.e. income jumps from low to high at time t = ∆l, then draw the

length of time ∆h that income remains high. ∆h is exponentially distributed with

parameter λh.

• If ∆l +∆h ≥ ∆, set ∆l

1 = ∆l and ∆h

1 = ∆−∆l

1. Total income received over

the time interval H is computed according to (17).

• If ∆l +∆h < ∆, i.e. income jumps from high to low at time t = ∆l +∆h, set

∆l

1 = ∆l and ∆h

1 = ∆h. Denote ∆1 := ∆l

1 +∆h

1 and go to the next step.

2. Without loss of generality, assume we are now at step n ≥ 2. Draw the length of time ∆l

that income remains low from time t = ∆n−1. There are two possibilities:



⊛ If ∆l + ∆n−1 ≥ ∆, set ∆l

n
= ∆ −∆n−1 and ∆h

n
= 0. The values of total income

received during the time intervals ∆l

n
and ∆h

n
are respectively given by

W l

n
=

∫ ∆n−1+∆l
n

∆n−1

wldt, (18)

W h

n
=

∫ ∆

∆−∆h
n

whdt (19)

Total income received over the time interval H is therefore given by

W (0) =
n

∑

k=1

[

W l

k
+W h

k

]

. (20)

⊛ If ∆l +∆n−1 < ∆, i.e. income jumps from low to high at time t = ∆l +∆n−1, then

draw the length of time ∆h that income remains high.

• If ∆n−1+∆l+∆h ≥ ∆, set ∆l

n
= ∆l and ∆h

n
= ∆−∆l−∆n−1. Total income

received over the time interval H is computed according to (20).

• If ∆n−1 +∆l +∆h < ∆, i.e. income jumps from high to low again at time t =
∆n−1+∆l+∆h, set ∆l

n
= ∆l and ∆h

n
= ∆h. Denote ∆n := ∆n−1+∆l

n
+∆h

n

and proceed to step n+ 1.

The algorithm generating per-period income of ζhN individuals receiving high income at

time t = 0 is quite analogous to Algorithm 1 and therefore presented in Appendix A. When

we combine these individuals with those receiving low income at time t = 0, we obtain the

cross-sectional distribution of per-period income.

5 Applications

There are two applications of our algorithm. First, the algorithm can be used to simulate the

distributions of annual income and interest rates when the parameters of the continuous time

Markov processes are known and given. Second, it can be used to calibrate the parameters to

match empirical targets.

We now perform the first application assuming that the fundamental parameters of the labor

income process are given. Specifically, we use the Algorithms 1 and 2 to generate the cross-

sectional distribution of annual labor income. First, let us assume a unit of time is a year. As

we are interested in computing annual labor income, let us set ∆ = 1. We set the low value

and the high value of instantaneous labor income to 0 and 100, respectively. The sample size is

ten millions, i.e. N = 107. To gain a clear insight into the shape of the distribution of annual

labor income, let us run two simulations corresponding to two pairs of the arrival rates. First,

the low-income exit rate is greater than the high-income exit rate, i.e. λl > λh. Second, the

low-income exit rate is smaller than the high-income exit rate, i.e. λl < λh.5 The parameters

are shown in Table 1 below.6

5We do not expect that identical arrival rates are empirically plausible since they would imply a uniform

distribution. Empirical distributions of annual income are skewed to the right (Cao and Luo, 2017; Khieu and

Wälde, 2023).

6Since the parameters are assumed to be known, we set them on an ad hoc basis. The interpretation of the

parameters is straightforward. For example, λl = 0.8−1 means that the instantaneous probability (or the rate)



Table 1 Parameters

∆ wl wh λl λh

Simulation 1 1 0 100 0.2−1 0.8−1

Simulation 2 1 0 100 0.8−1 0.2−1

The left panel of Figure 2 displays the histogram of annual labor income resulted from

simulation 1.7 The histogram shows that the distribution of annual labor income is skewed to

the left. This is because instantaneous labor income jumps more often from low to high than

from high to low. When instantaneous labor income leaves the high state more often than the

low state, the realization of annual labor income is more likely to be low. This justifies the

right-skewed histogram of annual labor income presented in the right panel of Figure 2. Kuhn

and Ríos-Rull (2016) examine the Survey of Consumer Finances 2013 and find the distribution

of annual income is indeed skewed to the right (see their Figure 6). The second simulation is

therefore empirically relevant. This finding implies that a two-state continuous time Markov

process can be used to model an empirically plausible distribution of annual labor income.8
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Figure 2 Histograms of annual labor income in simulation 1 (left panel) and simulation 2

(right panel)

Table 2 presents the moments of annual labor income generated by the model. Although wl

and wh are identical in two simulations, the mean of annual labor income is larger in simulation

1 than in simulation 2. This is because λl > λh holds in simulation 1 while the opposite holds in

simulation 2. This also justifies why the skewness is negative in simulation 1 but turns positive

in simulation 2. The variance and the kurtosis are identical in two simulations because of an

identical support and the swap of the arrival rates.

We have shown that our algorithm can be used to simulate the distribution of annual labor

income given the parameters. When one would like to match the moments of annual labor

income in the model with some empirical counterparts, the parameters of the labor income

process are to be calibrated. Our algorithm simulating the path integral allows for computing

that an individual jumps from low income to high income is 0.8−1. Analogously, λh = 0.2−1 means that the

instantaneous probability that an individual jumps from high income to low income is 0.2−1. These rates are larger

than one due to a very small time interval.

7The simulation can be easily done using Matlab, Python, or Julia. Coleman et al. (2021) show that these three

languages have little effect on performance.

8An extension to an N-state Markov process would be interesting, but it may come at the cost of computational

burden and therefore efficiency.



the theoretical moments, which are functions of the parameters. The calibration exercise is to

minimize the (weighted) sum of the squared differences between the theoretical moments and

empirical moments choosing the parameters. As a right-skewed distribution of annual labor

income is expected, the constraint λh > λl should be taken into account in the calibration.

This constitutes a constrained minimization problem, and the calibration exercise can easily be

done by solving numerically a nonlinear equation. We leave the calibration exercise for future

research because our primary objective is to provide an algorithm rather than calibrate a set of

parameters for a specific data set.

Table 2 Moments of annual labor income in the model

mean variance skewness kurtosis

Simulation 1 80.0 430.3 −1.1 3.8
Simulation 2 20.0 430.3 1.1 3.8

6 Concluding remarks and outlook

Calibration of continuous time models is generally challenging since it requires matching

the frequency of variables in the models with that in the data. We develop a rigorous algorithm

that allows for computing the distributions of annual income and interest rates making use of

a path integral. Higher moments can then be computed from the generated distributions and

therefore are functions of the fundamental parameters of the continuous time Markov processes.

Thus, this algorithm is useful for quantitative research using continuous time Markov processes

since it allows for simulation of annual income and interest rates or calibration of the parameters

of the Markov processes.

Another approach to calibrating the parameters of continuous time Markov processes is to

employ the moment generating function of the path integral.9 As the moments of the path

integral are functions of the parameters, these parameters are chosen such that the moments in

the data and model are as close as possible. With the calibrated parameters, our algorithm can

be used to generate a histogram and a density of the path integral. Computing the moments of

the path integral using the moment generating function is a promising research project.10
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Appendix

A Algorithm for individuals with high initial income

Algorithm 2 (Individuals with high initial income)

1. Draw the length of time∆h that income remains high from time t = 0. ∆h is exponentially

distributed with parameter λh. There are two possibilities:

⊛ If ∆h ≥ ∆, set ∆h

1 = ∆ and ∆l

1 = 0. The values of total income received during

the time intervals ∆l

1 and ∆h

1 are respectively given by

W h

1 =

∫ ∆h

1

0

whdt, (A.1)

W l

1 =

∫ ∆

∆−∆l

1

wldt. (A.2)

Total income received over the time interval H is therefore given by

W (0) = W l

1 +W h

1 . (A.3)

⊛ If ∆h < ∆, i.e. income jumps from high to low at time t = ∆h, then draw the length

of time ∆l that income remains low. ∆l is exponentially distributed with parameter

λl.

• If ∆l +∆h ≥ ∆, set ∆h

1 = ∆h and ∆l

1 = ∆−∆h

1 . Total income received over

the time interval H is computed according to (A.3).

• If ∆l +∆h < ∆, i.e. income jumps from low to high at time t = ∆l +∆h, set

∆l

1 = ∆l and ∆h

1 = ∆h. Denote ∆1 := ∆l

1 +∆h

1 and go to the next step.

2. Without loss of generality, assume we are now at step n ≥ 2. Draw the length of time ∆h

that income remains high from time t = ∆n−1. There are two possibilities:

⊛ If ∆h + ∆n−1 ≥ ∆, set ∆h

n
= ∆ −∆n−1 and ∆l

n
= 0. The values of total income

received during the time intervals ∆l

n
and ∆h

n
are respectively given by

W h

n
=

∫ ∆n−1+∆h
n

∆n−1

whdt, (A.4)

W l

n
=

∫ ∆

∆−∆l
n

wldt (A.5)

Total income received over the time interval H is therefore given by

W (0) =
n

∑

k=1

[

W l

k
+W h

k

]

. (A.6)

⊛ If ∆h + ∆n−1 < ∆, i.e. income jumps from high to low at time t = ∆h + ∆n−1,

then draw the length of time ∆l that income remains low.



• If ∆n−1 + ∆l + ∆h ≥ ∆, set ∆h

n
= ∆h and ∆l

n
= ∆ − ∆h− ∆n−1. Total

income received over the time interval H is computed according to (A.6).

• If ∆n−1 +∆l +∆h < ∆, i.e. income jumps from low to high again at time t =
∆n−1+∆l+∆h, set ∆l

n
= ∆l and ∆h

n
= ∆h. Denote ∆n := ∆n−1+∆l

n
+∆h

n

and proceed to step n+ 1.


