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Abstract
We propose a constrained generalized method of moments (GMM) estimator with some equilibrium uniqueness

conditions for estimating the conduct parameter in a log-linear model with homogeneous goods markets. Monte Carlo

simulations demonstrate that merely imposing parameter restrictions leads to not just inaccurate estimations but also

some numerical issues, and adding the equilibrium uniqueness conditions resolves them. We also suggest a formulation

of the GMM estimation to further avoid the numerical issues.
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1 Introduction

Measuring competitiveness is central in empirical IO, and the conduct parameter is a widely used proxy.

Since marginal cost is typically unobserved, researchers identify and estimate the conduct parameter

indirectly.

Bresnahan (1982) develops an identification strategy under linear demand and marginal cost, and

Matsumura and Otani (2023) provide detailed conditions for this case. Yet, empirical work often employs

log-linear models (Okazaki et al. 2022, Mérel 2009), which tend to produce implausibly low or negative

estimates, even though identification conditions for general models are available from Lau (1982) and

Matsumura and Otani (2025). This casts doubt on the methodology and complicates model selection.

We address this by proposing a constrained GMM estimator that incorporates theoretical conditions

for the uniqueness of equilibrium. First, we derive new conditions guaranteeing a unique equilibrium.

Second, Monte Carlo simulations show that parameter restrictions alone yield inaccurate estimates and

numerical errors, while adding equilibrium conditions resolves them. We also propose a modified GMM

formulation that further mitigates these issues.

2 Model

Consider data with T markets with homogeneous products. Assume there are N firms in each market.

Let t = 1, . . . , T be the index of markets. Then, we obtain the supply equation:

Pt + θQtP
′

t(Qt) = MCt(Qt), (1)

where Qt is the aggregate quantity, Pt(Qt) is the inverse demand function, MCt(Qt) is the marginal

cost function, and θ ∈ [0, 1] is the conduct parameter. The equation nests perfect competition (θ = 0),
Cournot competition (θ = 1/N), and perfect collusion (θ = 1). See Bresnahan (1982) for the details.

Consider an econometric model. Assume that the inverse demand and the marginal cost functions

are given as

Pt = f(Qt, X
d
t , ε

d
t , α),

MCt = g(Qt, X
c
t , ε

c
t , γ),

where Xd
t and Xc

t are the vector of exogenous variables, εdt and εct are the error terms, and α and γ are

the vector of parameters. We allow Xd
t and Xc

t to have common variables, but assume that there is at

least one demand variable and one cost variable that are mutually excluded. We also have the demand-

and supply-side instruments, Zd
t and Zc

t , and assume that the error terms satisfy the mean independence

condition, E[εdt ♣ Xd
t , Z

d
t ] = E[εct ♣ X

c
t , Z

c
t ] = 0.

The identification of the conduct parameter is indirectly characterized by Lau (1982):

Theorem 1. Under the assumption that the industry inverse demand and cost functions are twice con-

tinuously differentiable, the index of competitiveness θ cannot be identified from data on industry price

and output and other exogenous variables alone if and only if the industry inverse demand function is

separable in Xd, that is, f(Q, r(Xd)), but not take the form P = Q−1/θr(Xd) + s(Q).

This theorem implies that the conduct parameter is identified if the inverse demand function is not

separable. A demand rotation instrument (Bresnahan 1982) achieves this. See Appendix A.1 for the

details of the definition of separability.
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2.1 Log-linear demand and log-linear marginal cost

Consider a log-linear model, which is a typical specification. The inverse demand and marginal cost

functions are specified as

logPt = α0 − (α1 + α2Z
R
t ) logQt + α3 log Yt + εdt , (2)

logMCt = γ0 + γ1 logQt + γ2 logWt + γ3 logRt + εct , (3)

where Yt and ZR
t are excluded demand shifters and Wt and Rt are excluded cost shifters. When Yt and

ZR
t vary without changing the equilibrium quantity, they work as the demand rotation instrument. Then,

(1) is written as

Pt = θ(α1 + α2Z
R
t )Pt +MCt. (4)

By taking logarithm of (4) and substituting (3), we obtain

logPt = − log(1− θ(α1 + α2Z
R
t )) + γ0 + γ1 logQt + γ2 logWt + γ3 logRt + εct . (5)

The intersection of (2) and (5) determines the equilibrium, but there could be multiple equilibria.

Although this model is widely known, no paper has examined the multiple equilibria problem to our

knowledge. The next proposition provides the conditions for uniqueness. The proof is in the online

appendix A.2.

Proposition 1. Assume that α1+α2Z
R ̸= 0. Let Ξ = γ0+γ1

α0+α3 log Y+εd

α1+α2ZR +γ2 logW +γ3 logR+εc.
The number of equilibria is determined as follows:

• When 1− θ(α1 + α2Z
R) ≤ 0, there is no equilibrium,

• When 1− θ(α1 + α2Z
R) > 0,

– If γ1 + α1 + α2Z
R ̸= 0, there is a unique equilibrium,

– If γ1+α1+α2Z
R = 0, there are infinitely many equilibria when exp(Ξ) = 1−θ(α1+α2Z

R
t ),

but there is no equilibrium otherwise.

The condition 1 − θ(α1 + α2Z
R) > 0 rules out the region where the log transformation leaves its

domain, which corresponds to implausibly elastic demand combined with large conduct. The assumption

γ1 +α1 +α2Z
R ̸= 0 excludes the knife-edge case in which the (pseudo) supply and demand are exactly

parallel so that every price could be an equilibrium; both restrictions are technical and do not bind in

regular empirical settings.

3 Estimation

Let ξ = (α0, α1, α2, α3, γ0, γ1, γ2, γ3, θ) be the vector of the parameters in the model. We use the GMM

for the estimation. Among GMM estimators, we apply the nonlinear system two-stage-least-squares

(N2SLS) using (2) and (5). We rewrite the demand equation (2) and the supply equation (5) as

εdt (ξ) = logPt − α0 + (α1 + α2Z
R
t ) logQt − α3 log Yt, (6)

εct(ξ) = logPt + log(1− θ(α1 + α2Z
R
t ))− γ0 − γ1 logQt − γ2 logWt − γ3 logRt. (7)

To estimate the parameters, we convert the conditional moments, E[εdt ♣ Zd
t ] = E[εct ♣ Zc

t ] = 0, into

unconditional moments, E[εdtZ
d
t ] = E[εctZ

c
t ] = 0. Using Equations (6) and (7), we construct the sample

analog of the unconditional moments:

g(ξ) =



1
T

∑T
t=1 ε

d
t (ξ)Z

d
t

1
T

∑T
t=1 ε

c
t(ξ)Z

c
t



.
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We define the N2SLS estimator as the solution to the problem,

ξ∗ = argmin
ξ

g(ξ)⊤Wg(ξ) (8)

where the weight matrix W is defined as

W =



1

T

T
∑

t=1

Z⊤

t Zt

]−1

where Zt =



Zd⊤
t 0

0 Zc⊤
t



.

We also add the following constraints based on Proposition 1 to (8):

0 ≤ θ ≤ 1, (9)

α1 + α2Z
R
t > 0, γ1 > 0, t = 1, . . . , T (10)

1− θ(α1 + α2Z
R
t ) > 0, t = 1, . . . , T. (11)

Constraint (9) is a standard assumption on the conduct parameter. Constraint (10) implies the downward-

sloping demand and upward-sloping marginal cost, which guarantees that γ1 + α1 + α2Z
R ̸= 0. Con-

straint (11) relates to the uniqueness of equilibrium. See the detailed simulation setting in the online

appendix A.3.

4 Simulation results

We compare N2SLS estimations with and without constraints in Table 1. Panel (a) shows that, without

constraints, the estimator fails to recover γ0 and θ, replicating known issues due to the flat objective

function and invalid search regions without equilibrium (Appendix A.4). Panel (b), which imposes Con-

straint (9), improves estimation in large samples via the domain restriction.1 However, in small samples,

demand parameter estimates degrade and convergence declines. When convergence fails, α1 becomes

large, rendering 1− θ(α1 +α2Z
R
t ) < 0 and causing numerical errors inside the log term in (1). Adding

constraints (10) and (11) in Panel (c) improves small-sample convergence and demand accuracy, though

convergence is not guaranteed. In large samples, performance surpasses that of Panel (b) for some pa-

rameters.

To address convergence failure, we propose an alternative formulation (Table 2) that computes εct via

(3) and enforces Equation (4) as a constraint, along with Constraints (9)–(11).2 This avoids log terms in

both objective and constraints, achieving 100% convergence and reducing θ’s bias and RMSE to 0.014

and 0.217, though not dominating Panel (c) across all parameters. In sum, incorporating equilibrium

uniqueness conditions and eliminating log terms greatly improves conduct parameter estimation. Addi-

tional experiments appear in Appendix A.5.

5 Discussion

Two concerns surround the conduct parameter approach: the difficulty of interpreting intermediate or

extreme values, and the critique by Corts (1999) that it may understate market power under collusion.3

We show that implausible estimates in log-linear models often stem from numerical issues—especially

when equilibrium conditions are omitted—rather than conceptual flaws. Addressing these issues yields

more stable and interpretable results.

This distinction matters: misattributing numerical artifacts to theoretical limits risks dismissing a

useful tool. Our findings aim to encourage more constructive use of the conduct parameter approach.

1Constraints (10) and (11) alone yield severe bias; see Table 9 and Appendix A.5.
2See Appendix A.3 for details.
3As Magnolfi and Sullivan (2022) note, this critique does not apply when the data stem from a static model.
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Table 1: Performance comparison

(a) N2SLS without Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α0 -1.070 7.012 -0.021 5.110 0.365 2.207 0.400 2.030

α1 -0.164 1.060 -0.001 0.782 0.073 0.458 0.096 0.574

α2 -0.011 0.104 -0.006 0.071 0.002 0.033 0.005 0.043

α3 -0.101 0.619 -0.005 0.474 0.021 0.198 0.029 0.187

γ0 9.735 15.743 9.636 10.870 13.173 13.269 13.294 13.351

γ1 -0.070 1.624 -0.177 0.469 -0.184 0.248 -0.177 0.220

γ2 -0.034 0.939 -0.098 0.317 -0.090 0.152 -0.080 0.127

γ3 -0.047 0.750 -0.091 0.311 -0.098 0.156 -0.085 0.133

θ -3e+05 3e+06 -2e+05 2e+06 -8e+04 9e+04 -9e+04 1e+05

Runs converged (%) 99.500 99.800 98.600 98.400

Sample size (T ) 100 200 1000 1500

(b) N2SLS with Constraints (9)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α0 -1.922 8.603 -0.068 5.116 0.037 2.035 0.000 1.556

α1 -0.299 1.314 -0.010 0.785 0.005 0.312 0.000 0.240

α2 -0.013 0.104 -0.002 0.063 0.001 0.024 0.000 0.019

α3 -0.165 0.774 -0.007 0.472 -0.004 0.185 -0.001 0.152

γ0 -1.767 14.394 -1.001 6.530 -0.208 1.993 -0.156 1.566

γ1 0.255 1.949 0.132 0.838 0.034 0.229 0.027 0.174

γ2 0.125 1.097 0.053 0.475 0.017 0.150 0.019 0.119

γ3 0.099 0.903 0.062 0.481 0.007 0.149 0.014 0.120

θ -0.098 0.441 -0.060 0.421 -0.061 0.319 -0.058 0.281

Runs converged (%) 98.100 98.700 100.000 100.000

Sample size (T ) 100 200 1000 1500

(c) N2SLS with Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α0 -0.905 6.954 0.120 5.001 0.072 2.042 0.052 1.563

α1 -0.141 1.053 0.018 0.768 0.010 0.313 0.008 0.241

α2 -0.006 0.101 0.000 0.062 0.001 0.024 0.001 0.019

α3 -0.088 0.620 0.007 0.475 -0.001 0.186 0.003 0.152

γ0 -1.748 14.206 -0.938 6.428 0.015 1.995 0.163 1.570

γ1 0.254 1.927 0.129 0.825 0.018 0.226 0.003 0.170

γ2 0.117 1.083 0.049 0.467 0.008 0.148 0.007 0.116

γ3 0.098 0.890 0.058 0.478 -0.001 0.148 0.003 0.118

θ -0.100 0.441 -0.072 0.424 -0.121 0.351 -0.148 0.333

Runs converged (%) 99.600 99.900 100.000 100.000

Sample size (T ) 100 200 1000 1500

Note: The error terms are drawn from a normal distribution, N(0, σ). True values: α0 = 20.0, α1 = 1.0, α2 = 0.1, α3 =
1.0, γ0 = 5.0, γ1 = 1.0, γ2 = 1.0, γ3 = 1.0, θ = 0.5 and σ = 1.0. See online appendix A.3 and Matsumura and Otani (2024)

for the setting.
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Table 2: Ad hoc method using (3) to compute εct and (4) with Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α0 -0.614 5.995 -0.213 4.315 0.077 2.034 0.063 1.555

α1 -0.085 0.902 -0.024 0.663 0.011 0.312 0.010 0.240

α2 -0.028 0.105 -0.022 0.073 0.000 0.025 0.001 0.020

α3 -0.070 0.549 -0.019 0.431 -0.001 0.185 0.004 0.152

γ0 -5.106 15.922 -2.379 6.990 -0.375 1.959 -0.398 1.533

γ1 0.386 2.047 0.141 0.839 0.045 0.229 0.044 0.175

γ2 0.190 1.155 0.054 0.475 0.022 0.150 0.027 0.120

γ3 0.163 1.006 0.065 0.482 0.013 0.149 0.023 0.121

θ 0.186 0.442 0.158 0.422 -0.007 0.275 0.014 0.217

Runs converged (%) 100.000 100.000 100.000 100.000

Sample size (T ) 100 200 1000 1500
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