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Abstract

We propose a constrained generalized method of moments (GMM) estimator with some equilibrium uniqueness
conditions for estimating the conduct parameter in a log-linear model with homogeneous goods markets. Monte Carlo
simulations demonstrate that merely imposing parameter restrictions leads to not just inaccurate estimations but also

some numerical issues, and adding the equilibrium uniqueness conditions resolves them. We also suggest a formulation
of the GMM estimation to further avoid the numerical issues.
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1 Introduction

Measuring competitiveness is central in empirical 10, and the conduct parameter is a widely used proxy.
Since marginal cost is typically unobserved, researchers identify and estimate the conduct parameter
indirectly.

Bresnahan (1982) develops an identification strategy under linear demand and marginal cost, and
Matsumura and Otani (2023) provide detailed conditions for this case. Yet, empirical work often employs
log-linear models (Okazaki et al. 2022, Mérel 2009), which tend to produce implausibly low or negative
estimates, even though identification conditions for general models are available from Lau (1982) and
Matsumura and Otani (2025). This casts doubt on the methodology and complicates model selection.

We address this by proposing a constrained GMM estimator that incorporates theoretical conditions
for the uniqueness of equilibrium. First, we derive new conditions guaranteeing a unique equilibrium.
Second, Monte Carlo simulations show that parameter restrictions alone yield inaccurate estimates and
numerical errors, while adding equilibrium conditions resolves them. We also propose a modified GMM
formulation that further mitigates these issues.

2 Model
Consider data with 7' markets with homogeneous products. Assume there are N firms in each market.
Lett =1,...,T be the index of markets. Then, we obtain the supply equation:
P; 4 0Q:P;(Q:) = MCy(Q), (1)

where Q) is the aggregate quantity, P;(Q;) is the inverse demand function, M C;(Q;) is the marginal
cost function, and 8 € [0, 1] is the conduct parameter. The equation nests perfect competition (6 = 0),
Cournot competition (§ = 1/N), and perfect collusion (6 = 1). See Bresnahan (1982) for the details.

Consider an econometric model. Assume that the inverse demand and the marginal cost functions
are given as

-Pt = f(Qtanaegaa)9
MCt = g(QtaXtcaafa 7)7

where Xf and X are the vector of exogenous variables, 5? and €7 are the error terms, and o and +y are
the vector of parameters. We allow Xf and X7 to have common variables, but assume that there is at
least one demand variable and one cost variable that are mutually excluded. We also have the demand-
and supply-side instruments, Zfl and Z7, and assume that the error terms satisfy the mean independence
condition, E[e¢ | X2, Z3] = E[e¢ | X§, Z¢] = 0.

The identification of the conduct parameter is indirectly characterized by Lau (1982):

Theorem 1. Under the assumption that the industry inverse demand and cost functions are twice con-
tinuously differentiable, the index of competitiveness 0 cannot be identified from data on industry price
and output and other exogenous variables alone if and only if the industry inverse demand function is
separable in X9, that is, f(Q,r(X®)), but not take the form P = Q~/%r(X9) + s(Q).

This theorem implies that the conduct parameter is identified if the inverse demand function is not
separable. A demand rotation instrument (Bresnahan 1982) achieves this. See Appendix A.1 for the
details of the definition of separability.



2.1 Log-linear demand and log-linear marginal cost

Consider a log-linear model, which is a typical specification. The inverse demand and marginal cost
functions are specified as

log P, = ag — (o1 + 02.Zf) log Q; + a3log V; + &f, )
log MCy = 7o + 71 1log Q1 + 72 log Wi + 3 log Ry + €, 3)

where Y; and ZtR are excluded demand shifters and W; and R; are excluded cost shifters. When Y; and
Zf vary without changing the equilibrium quantity, they work as the demand rotation instrument. Then,
(1) is written as

P, =0(o1 + 02 Zf) P + MC;. )
By taking logarithm of (4) and substituting (3), we obtain
log P; = —log(1 — 0(a1 + a2Z{%)) + 70 + 11 log Q: + 2 log W; + v3log R; + &5. )

The intersection of (2) and (5) determines the equilibrium, but there could be multiple equilibria.
Although this model is widely known, no paper has examined the multiple equilibria problem to our
knowledge. The next proposition provides the conditions for uniqueness. The proof is in the online
appendix A.2.

ap+as3 log Y +e¢
a1+asZR

Proposition 1. Assume that oy +0oZ® # 0. Let 2 = vo+71
The number of equilibria is determined as follows:

s When 1 —0(aq + aaZf) <0, there is no equilibrium,

e Whenl — 0(6!1 + CMQZR) > 0,

+7v21log W +~v3log R+€.

— If y1 4+ a1 + as ZF £ 0, there is a unique equilibrium,
- Ify1+ai+aeZ® = 0, there are infinitely many equilibria when exp(Z) = 1—0(a1 +a2 ZE),
but there is no equilibrium otherwise.

The condition 1 — 8(cz + a2 Z®) > 0 rules out the region where the log transformation leaves its
domain, which corresponds to implausibly elastic demand combined with large conduct. The assumption
1 4 01 + o ZF # 0 excludes the knife-edge case in which the (pseudo) supply and demand are exactly
parallel so that every price could be an equilibrium; both restrictions are technical and do not bind in
regular empirical settings.

3 Estimation

Let £ = (ap, a1, @2, 3,70, 71, V2, V3, §) be the vector of the parameters in the model. We use the GMM
for the estimation. Among GMM estimators, we apply the nonlinear system two-stage-least-squares
(N2SLS) using (2) and (5). We rewrite the demand equation (2) and the supply equation (5) as

ed(€) =log P; — ag + (a1 + 02Z8) log Q; — a3log Vs, (6)
€5(€) = log P; + log(1 — 0(a1 + a2ZL%)) — v0 — 1 log Qs — 72 log Wi — 3 log R;. (7)
To estimate the parameters, we convert the conditional moments, E[ef | Z8] = E[e¢ | Z¢] = 0, into

unconditional moments, E[e¢Z¢] = E[e¢Z¢] = 0. Using Equations (6) and (7), we construct the sample
analog of the unconditional moments:

z ZT:1 5d(f)Zd
_ | T2g=15¢ t
9O=1 IS 6z



We define the N2SLS estimator as the solution to the problem,
¢ =argmin g(¢)' Wy(€) ®)
where the weight matrix W is defined as

1 T
722
t=1

-1

W= zZat 0 ]

0o zT

where Z; = [

We also add the following constraints based on Proposition 1 to (8):

0<6<1, )
o+ 0ZB>0, >0, t=1,...,T (10)
1—0( +Zf) >0, t=1,...,T. (11)

Constraint (9) is a standard assumption on the conduct parameter. Constraint (10) implies the downward-
sloping demand and upward-sloping marginal cost, which guarantees that y; + oy + e Z® # 0. Con-
straint (11) relates to the uniqueness of equilibrium. See the detailed simulation setting in the online
appendix A.3.

4 Simulation results

We compare N2SLS estimations with and without constraints in Table 1. Panel (a) shows that, without
constraints, the estimator fails to recover 7y and 6, replicating known issues due to the flat objective
function and invalid search regions without equilibrium (Appendix A.4). Panel (b), which imposes Con-
straint (9), improves estimation in large samples via the domain restriction.! However, in small samples,
demand parameter estimates degrade and convergence declines. When convergence fails, a; becomes
large, rendering 1 — (a1 + azZtR) < 0 and causing numerical errors inside the log term in (1). Adding
constraints (10) and (11) in Panel (c) improves small-sample convergence and demand accuracy, though
convergence is not guaranteed. In large samples, performance surpasses that of Panel (b) for some pa-
rameters.

To address convergence failure, we propose an alternative formulation (Table 2) that computes € via
(3) and enforces Equation (4) as a constraint, along with Constraints (9)—(11).> This avoids log terms in
both objective and constraints, achieving 100% convergence and reducing ’s bias and RMSE to 0.014
and 0.217, though not dominating Panel (c) across all parameters. In sum, incorporating equilibrium
uniqueness conditions and eliminating log terms greatly improves conduct parameter estimation. Addi-
tional experiments appear in Appendix A.5.

5 Discussion

Two concerns surround the conduct parameter approach: the difficulty of interpreting intermediate or
extreme values, and the critique by Corts (1999) that it may understate market power under collusion.’
We show that implausible estimates in log-linear models often stem from numerical issues—especially
when equilibrium conditions are omitted—rather than conceptual flaws. Addressing these issues yields
more stable and interpretable results.

This distinction matters: misattributing numerical artifacts to theoretical limits risks dismissing a
useful tool. Our findings aim to encourage more constructive use of the conduct parameter approach.

'Constraints (10) and (11) alone yield severe bias; see Table 9 and Appendix A.5.
2See Appendix A.3 for details.
3 As Magnolfi and Sullivan (2022) note, this critique does not apply when the data stem from a static model.



Table 1: Performance comparison

(a) N2SLS without Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Qg -1.070  7.012 -0.021 5.110 0.365 2207 0400 2.030
oy -0.164 1.060 -0.001 0.782 0.073 0458 0.096 0.574
Qa9 -0.011  0.104 -0.006 0.071  0.002 0.033 0.005 0.043
as -0.101  0.619 -0.005 0474 0.021 0.198  0.029 0.187
Yo 9.735 15.743  9.636 10.870 13.173 13.269 13.294 13.351
241 -0.070  1.624 -0.177 0469 -0.184 0.248 -0.177 0.220
Yo -0.034 0939 -0.098 0.317 -0.090 0.152 -0.080 0.127
Y3 -0.047 0.750 -0.091 0.311 -0.098 0.156 -0.085 0.133
0 -3e+05  3e+06 -2e+05 2e+06 -8e+04 9e+04 -9e+04  1e+05
Runs converged (%) 99.500 99.800 98.600 98.400
Sample size (T") 100 200 1000 1500

(b) N2SLS with Constraints (9)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Qg -1.922  8.603 -0.068 5.116 0.037 2.035  0.000 1.556
ai -0.299 1314 -0.010 0.785 0.005 0.312  0.000 0.240
s -0.013  0.104 -0.002 0.063 0.001 0.024  0.000 0.019
Qas -0.165 0.774 -0.007 0.472 -0.004 0.185 -0.001 0.152
Yo -1.767 14394 -1.001  6.530 -0.208 1.993 -0.156 1.566
Y1 0.255 1949 0.132 0.838 0.034 0.229  0.027 0.174
Y2 0.125 1.097 0.053 0475 0.017 0.150 0.019 0.119
Y3 0.099 0.903 0.062 0481 0.007 0.149 0.014 0.120
0 -0.098 0441 -0.060 0.421 -0.061 0.319 -0.058 0.281
Runs converged (%) 98.100 98.700 100.000 100.000
Sample size (T") 100 200 1000 1500

(c) N2SLS with Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Qg -0905 6954 0.120 5.001 0.072 2.042  0.052 1.563
a -0.141 1.053 0.018 0.768 0.010 0.313  0.008 0.241
a9 -0.006  0.101 0.000 0.062 0.001 0.024  0.001 0.019
Qas -0.088  0.620 0.007 0475 -0.001 0.186  0.003 0.152
Yo -1.748 14206 -0.938 6.428 0.015 1.995 0.163 1.570
Y 0.254 1927 0.129 0.825 0.018 0.226  0.003 0.170
Yo 0.117 1.083 0.049 0.467 0.008 0.148  0.007 0.116
Y3 0.098 0.890 0.058 0478 -0.001 0.148  0.003 0.118
0 -0.100  0.441 -0.072 0424 -0.121 0.351 -0.148 0.333
Runs converged (%) 99.600 99.900 100.000 100.000
Sample size (T) 100 200 1000 1500

Note: The error terms are drawn from a normal distribution, N (0, c). True values: o = 20.0,1 = 1.0,a2 = 0.1, 3 =
1.0,70 = 5.0,y1 = 1.0,72 = 1.0,v3 = 1.0,0 = 0.5 and o = 1.0. See online appendix A.3 and Matsumura and Otani (2024)
for the setting.



Table 2: Ad hoc method using (3) to compute £f and (4) with Constraints (9), (10), and (11)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ag -0.614 5995 -0.213 4315 0.077 2.034 0.063 1.555
a -0.085 0.902 -0.024 0.663 0.011 0.312  0.010 0.240
s -0.028 0.105 -0.022 0.073  0.000 0.025 0.001 0.020
as -0.070 0.549 -0.019 0.431 -0.001 0.185 0.004 0.152
Yo -5.106  15.922 -2.379 6.990 -0.375 1.959 -0.398 1.533
el 0.386 2.047 0.141 0.839  0.045 0.229 0.044 0.175
Yo 0.190 1.155 0.054 0475 0.022 0.150 0.027 0.120
Y3 0.163 1.006  0.065 0.482 0.013 0.149  0.023 0.121
0 0.186 0442 0.158 0.422 -0.007 0.275 0.014 0.217
Runs converged (%) 100.000 100.000 100.000 100.000
Sample size (T') 100 200 1000 1500
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