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Abstract
The Arellano-Bond type dynamic panel estimators are known to suffer from over-instrumentation. Using Monte Carlo

simulations, we compare Difference and System GMM with both default and collapsed instrument sets across varying

numbers of countries and time periods typical in macroeconomic analysis. Collapsing consistently outperforms default

instrumentation, providing more accurate estimates, especially as T increases. System GMM with collapsed

instruments performs best overall, especially for endogenous variables. These findings strongly support using collapsed

instruments for the analysis of macroeconomic panels, regardless of the number of countries or time periods.
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1. Introduction

Many macroeconomic datasets have a panel structure. The World Bank, for example, publishes

annual macroeconomic data for approximately 150 countries. The Federal Reserve publishes quar-

terly data for the fifty US states.

Economic processes often exhibit strong autocorrelation—this year’s GDP is similar to last

year’s GDP, plus or minus an adjustment—making a lagged dependent variable a necessary compo-

nent of most econometric models. Heterogeneity across countries also necessitates a fixed-effects

term in these models.

For these reasons, it is common to estimate dynamic panel models with both exogenous and

endogenous covariates:

yit = ρyi,t−1 + βxit + γzit + ηi + ϵit (1)

To eliminate the fixed effects, researchers typically estimate the model in first differences:

∆yit = ρ∆yi,t−1 + β∆xit + γ∆zit +∆ϵit (2)

While differencing eliminates the fixed effects and induces stationarity, it does so at a cost: the

lagged and differenced dependent variable, ∆yi,t−1, becomes correlated with the differenced error

term, ∆ϵit (Nickell, 1981).

In a series now famous papers, Arellano, Bond, Blundell, and Bover developed Generalized

Method of Moments (GMM) estimators that address these challenges by constructing instruments

from within the dataset itself. Arellano and Bond (1991) introduced the Difference GMM estimator

for dynamic panel data. As the name implies, Difference GMM estimates equation (2), the equa-

tion in first-differences, but it uses lagged levels as instruments. The System GMM estimator is due

to the combined work of Arellano and Bover (1995) and Blundell and Bond (1998). Arellano and

Bover (1995) introduced the idea of combining the levels and differences equations—equations (1)

and (2)—into a system to be estimated simultaneously. Whereas the level equation is instrumented

with lagged differences, the difference equation is instrumented by lagged levels.

These GMM estimators have become remarkably common in applied economics research. As

of April 2025, Arellano and Bond (1991) has been cited over 45,000 times, Blundell and Bond

(1998) more than 33,000 times, and Arellano and Bover (1995) over 26,000 times. Even method-

ological papers about implementation and refinement, such as David Roodman’s papers on the

Stata command xtabond2 (2009a) and instrument proliferation (2009b) have been cited 14,000

times and 6,800 times, respectively. Such extraordinary numbers suggest that these GMM estima-

tors have become default tools in applied research, often implemented without critically assessing

their appropriateness for specific applications. For textbook treatments of these methods, see Lev-

endis (2023).

Despite their widespread adoption, these methods are not without limitations. When the time

dimension (T ) grows moderately large, the number of instruments can increase dramatically, po-

tentially leading to overfitting. As Roodman (2009b) demonstrated, instrument proliferation can

re-introduce the very bias they were designed to eliminate.

Proper instrumentation requires a delicate balancing act. On the one hand, if you do not use

IVs at all, then you cannot get rid of endogeneity, and the coefficient estimates are guaranteed to

be biased. On the other hand, using too many instruments is a problem, too. This is most easily

seen in two-stage IV estimators. In the first stage, endogenous X is regressed on the IVs and the



remaining control variables (but not Y). A fitted value of X is then constructed. This X̂ should be

purged of its correlation with Y. But if we have too many IVs then we could have a perfectly fitting

first stage regression. This, in turn, implies that X̂ is identical to the original X . In this case, the

endogeneity problem hasn’t been fixed at all. The variable has simply been renamed from X to X̂!

Thus, the balancing act. We need to have just the right number of instruments, not too few and not

too many. How many should we use?

To address instrument proliferation, Roodman (2009b) proposed “collapsing” the instrument

matrix: combining moment conditions across time periods and thereby reducing the number of

instruments.

Despite the enormous influence of these estimators, there remains considerable uncertainty

about which variant performs best under different conditions. In this paper, we conduct Monte

Carlo simulations to compare four estimators: Difference GMM and System GMM, each imple-

mented with either default or collapsed instrument sets. Our simulation design focuses on sample

dimensions typical in macroeconomic research: between 10 and 200 countries with 20 to 50 time

periods. By systematically varying these dimensions, we provide practical guidance for applied

researchers on the appropriate estimator choice for different panel structures.

This research addresses a fundamental paradox in applied econometrics: dynamic GMM esti-

mators are most needed precisely in the challenging empirical contexts where they perform poorly

with default instruments. AB estimators are theoretically designed for short, wide panels (T ≈

5-10, N ≈ 100+), yet they are frequently applied in macroeconomic studies with longer time

dimensions (T = 15-30+), smaller cross-sections (regional studies, developing country samples),

and multiple endogenous variables that exacerbate instrument proliferation. Researchers face a

difficult trade-off: they have limited sample sizes but complex endogeneity problems, long time

series with persistent regressors requiring many instrument lags, and multiple potentially endoge-

nous controls. In these non-ideal but common applications, standard default settings often fail, yet

researchers lack systematic guidance on which estimator variants perform best under such con-

straints.

While Roodman (2009b) introduced the concept of instrument proliferation and proposed col-

lapsing as a solution, his Monte Carlo analysis focused exclusively on System GMM variants

with different instrument configurations. Our study provides a more comprehensive framework

by systematically comparing both Difference GMM and System GMM estimators alongside their

collapsed instrument counterparts. Since practitioners typically rely on standard software imple-

mentations, our systematic comparison across both major GMM estimator families and realistic

sample dimensions offers empirical evidence for establishing better default practices in dynamic

panel estimation.

Next, we review instrument proliferation, and explain “collapsing.”

2. Proliferation of Moments

To illustrate how the number of instruments can grow during GMM estimation, we examine a

simple case with T = 4 time periods and p = 2 endogenous variables (lagged Y and Z).



2.1. Difference GMM with Default Instruments

With differencing, t = 1 is lost in creating the first-difference, leaving t = 2 and 3 for estimation.

For each time period, we create instruments from all valid lags:

For lagged Y at t = 2:

E[yi0∆εi2] = 0

Since yi0 occurs before the differenced error term ∆ϵi2 = (ϵi2 − ϵi1), it is uncorrelated with the

error term and is thereby a valid instrument.

For lagged Y at t = 3:

E[yi0∆εi3] = 0

E[yi1∆εi3] = 0

Similarly for endogenous Z at t = 2:

E[zi0∆εi2] = 0

And for endogenous Z at t = 3:

E[zi0∆εi3] = 0

E[zi1∆εi3] = 0

Difference GMM with default instrumentation creates 6 distinct instruments (columns in the

instrument matrix).

2.2. Difference GMM with Collapsed Instruments

With collapsed instruments, on the other hand, the instrument count is much smaller. We create a

single instrument for each lag by summing across time periods:

For lagged Y , the instrument set is:

E[yi0(∆εi2 +∆εi3)] = 0

E[yi1∆εi3] = 0

For endogenous Z:

E[zi0(∆εi2 +∆εi3)] = 0

E[zi1∆εi3] = 0

Collapsing in Difference GMM thereby creates only 4 instruments.

2.3. System GMM with Default Instruments

System GMM adds level equations with differenced instruments to the difference equations. The

number of instruments are therefore the original six instruments from the Difference GMM matrix,

plus the following four instruments for the level equation:

E[∆yi1(ηi + εi2)] = 0 (at t = 2)

E[∆yi2(ηi + εi3)] = 0 (at t = 3)

E[∆zi1(ηi + εi2)] = 0 (at t = 2)

E[∆zi2(ηi + εi3)] = 0 (at t = 3)



2.4. System GMM with Collapsed Instruments

Collapsed instruments in System GMM combine both difference and level equations, each with

their own collapsed instrument structure. First, we include all 4 instruments from the collapsed

Difference GMM approach described earlier. Then, we add collapsed instruments for the level

equations:

E[(∆yi1 +∆yi2)((ηi + εi2) + (ηi + εi3))] = 0

E[(∆zi1 +∆zi2)((ηi + εi2) + (ηi + εi3))] = 0

These collapsed level equations combine all time periods into a single instrument for each

endogenous variable. This yields 6 instruments total (4 from collapsed difference equations plus 2

from collapsed level equations).

2.5. Summary and Comparison

In general, the instrument count (the number of columns in the instrument matrix) for each estima-

tor is:

Method Columns in the Instrument Matrix

Difference GMM (default): 1

2
p(T − 1)(T − 2)

Difference GMM (collapsed): p(T − 2)
System GMM (default): 1

2
p(T − 2)(T + 1)

System GMM (collapsed): p(T − 1)

For the default instrument sets, the number of columns in the instrument matrix (i.e. what is

commonly referred to as the “instrument count”) grows quadratically with T . With moderate

number of time periods (T = 20 to 50), the default GMM estimators create instrument sets which

quickly exceed the effective sample size. For the collapsed instrument set, on the other hand, the

number of columns only grows linearly with T .

3. The Data Generating Process

In our simulations, ρ = 0.7 represents the autoregressive parameter, β = 1.0 is the coefficient

on the exogenous variable x, and γ = 0.5 is the coefficient on the endogenous variable z. The

model incorporates country-specific fixed effects (ηi) and idiosyncratic errors (ϵit) drawn from

standard normal distributions. The endogenous variable z is constructed to be correlated with the

contemporaneous error term, creating the endogeneity problem that GMM methods are designed

to address.

The simulation incorporates an endogenous regressor zit that exhibits properties commonly en-

countered in empirical applications. The endogeneity is established through two distinct channels.

First, the variable is correlated with the country-specific effects. Second, and more importantly, it

is correlated with the contemporaneous idiosyncratic error term.

To generate data for zit we set the initial value of z:

zi0 = 0.5ηi + νi0 (3)



where νi0 ∼ N (0, 4). For subsequent periods (t = 1, 2, ..., T − 1), zit follows a first-order autore-

gressive process with contemporaneous endogeneity:

zit = 0.4zi,t−1 + 0.3εit + νit (4)

The moderate autoregressive coefficient of 0.4 introduces persistence in the series while maintain-

ing stationarity. εit is the contemporaneous idiosyncratic error term from the main equation and

νit ∼ N (0, 4) represents additional random variation specific to the z process. The coefficient of

0.3 on εit controls the degree of contemporaneous endogeneity.

We simulate the GMM estimators across sample sizes representative of common macroeco-

nomic panels: N = 10, 25, 50, 100, and 200. These values capture the range from small regional

groupings (like the 10 ASEAN countries) to medium-sized panels (such as the 46 Sub-Saharan

African nations) and large global samples (approaching the World Bank’s comprehensive datasets

with approximately 150-200 countries).

The time dimension varies from T = 20 to 50, reflecting common macroeconomic time series

lengths. While this exceeds the theoretical optimum for AB estimators (T ≈ 5-10), it captures

the reality that these methods are often applied in contexts where they are most needed but where

default instruments perform poorly. The lower bound corresponds to post-2000 datasets frequently

used in recent research, while the upper bound captures longer panels comparable to Federal Re-

serve state-level data that often extends back to the 1970s.

For each combination of N and T , we perform 1,000 Monte Carlo replications using Stata’s

xtabond2 command to compare four estimators: Difference GMM and System GMM, each

implemented with either default or collapsed instrument sets. This comprehensive design evaluates

estimator performance across sample dimensions (N = 10− 200, T = 20− 50) typical of applied

macroeconomic research

4. Results

Tables I-III present the Monte Carlo simulation results for our four estimators across different lev-

els of N and T . We compare their ability in estimating three key parameters: the lagged dependent

variable’s coefficient (ρ=0.7), the exogenous variable’s coefficient (β=1.0), and the endogenous

variable’s coefficient (γ=0.5).

Table I shows the estimates of the coefficient on the lagged dependent variable. The true value

is 0.70. Difference GMM with default instrumentation displays an increasingly downward bias as

T increases, especially with small N . For example, with N = 10 and T = 50, the estimate is 0.572

compared to the true value of 0.7. On the other hand, Difference GMM with a collapsed instrument

set performs remarkably well across all sample sizes, with estimates consistently around 0.69-

0.695 (slight downward bias) and smaller standard errors compared to the default version. System

GMM with default instruments exhibits upward bias, particularly for moderate N (25-50). With

N = 50 and T = 30, the estimate is 0.754, substantially above the true 0.70 value. System GMM

with collapsed instruments produces estimates of 0.71 across almost all configurations, with small

standard errors.

Table II shows the coefficient estimates on the exogenous variable. All estimators perform

relatively well for this parameter, especially as N increases. The two estimators with default



Table I: Estimated Coefficients on Lagged Dependent Variable

(True Value = ρ = 0.7)

T T

20 30 40 50 20 30 40 50

Difference GMM (default) Difference GMM (collapsed)

N

10 0.650 0.619 0.603 0.572 0.691 0.692 0.696 0.696

(0.119) (0.149) (0.177) (0.192) (0.035) (0.027) (0.027) (0.024)

25 0.685 0.678 0.672 0.663 0.691 0.693 0.695 0.695

(0.027) (0.038) (0.047) (0.052) (0.018) (0.012) (0.010) (0.009)

50 0.690 0.690 0.687 0.685 0.692 0.694 0.694 0.695

(0.011) (0.014) (0.018) (0.022) (0.013) (0.008) (0.007) (0.006)

100 0.692 0.693 0.694 0.692 0.693 0.694 0.695 0.695

(0.007) (0.006) (0.006) (0.008) (0.010) (0.007) (0.005) (0.004)

200 0.694 0.695 0.695 0.695 0.693 0.695 0.695 0.695

(0.005) (0.003) (0.003) (0.003) (0.007) (0.005) (0.004) (0.003)

System GMM (default) System GMM (collapsed)

N

10 0.676 0.657 0.668 0.670 0.709 0.708 0.707 0.707

(0.112) (0.128) (0.126) (0.133) (0.034) (0.028) (0.025) (0.025)

25 0.745 0.741 0.739 0.738 0.710 0.709 0.709 0.710

(0.023) (0.021) (0.021) (0.018) (0.019) (0.015) (0.013) (0.012)

50 0.734 0.754 0.751 0.750 0.707 0.706 0.707 0.707

(0.015) (0.014) (0.013) (0.012) (0.014) (0.012) (0.011) (0.009)

100 0.720 0.727 0.735 0.749 0.704 0.705 0.704 0.705

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.007)

200 0.712 0.716 0.720 0.723 0.701 0.701 0.703 0.704

(0.007) (0.007) (0.006) (0.006) (0.006) (0.005) (0.005) (0.006)



Table II: Estimated Coefficients on Exogenous Variable

(True Value = β = 1.0)

T T

20 30 40 50 20 30 40 50

Difference GMM (default) Difference GMM (collapsed)

N

10 0.981 0.966 0.958 0.945 0.997 0.998 0.997 0.999

(0.066) (0.076) (0.084) (0.088) (0.035) (0.032) (0.033) (0.033)

25 0.997 0.993 0.990 0.985 0.998 0.998 0.999 0.999

(0.021) (0.023) (0.024) (0.025) (0.020) (0.016) (0.013) (0.013)

50 0.999 0.999 0.997 0.996 0.998 0.999 1.000 1.000

(0.013) (0.012) (0.012) (0.012) (0.014) (0.011) (0.009) (0.008)

100 0.999 1.000 1.000 1.000 0.998 0.999 1.000 1.000

(0.009) (0.007) (0.006) (0.006) (0.010) (0.008) (0.007) (0.006)

200 1.000 1.000 1.000 1.001 0.999 0.999 1.000 1.000

(0.006) (0.005) (0.004) (0.004) (0.007) (0.006) (0.005) (0.004)

System GMM (default) System GMM (collapsed)

N

10 0.970 0.962 0.968 0.972 0.988 0.993 0.991 0.993

(0.059) (0.063) (0.060) (0.061) (0.035) (0.036) (0.031) (0.028)

25 0.981 0.982 0.983 0.984 0.995 0.995 0.994 0.994

(0.021) (0.018) (0.016) (0.014) (0.020) (0.016) (0.014) (0.013)

50 0.986 0.979 0.979 0.980 0.997 0.996 0.997 0.997

(0.015) (0.012) (0.011) (0.010) (0.015) (0.012) (0.011) (0.009)

100 0.992 0.989 0.987 0.981 0.998 0.998 0.998 0.998

(0.010) (0.008) (0.008) (0.007) (0.010) (0.009) (0.007) (0.007)

200 0.995 0.994 0.992 0.990 0.998 0.999 0.999 0.999

(0.007) (0.006) (0.005) (0.005) (0.007) (0.006) (0.005) (0.005)



Table III: Estimated Coefficients on Endogenous Variable

(True Value = γ = 0.50)

T T

20 30 40 50 20 30 40 50

Difference GMM (default) Difference GMM (collapsed)

N

10 0.574 0.561 0.559 0.556 0.563 0.562 0.560 0.558

(0.213) (0.258) (0.282) (0.304) (0.124) (0.139) (0.146) (0.150)

25 0.566 0.568 0.567 0.563 0.570 0.567 0.566 0.564

(0.070) (0.083) (0.094) (0.100) (0.032) (0.034) (0.036) (0.040)

50 0.569 0.565 0.567 0.567 0.568 0.567 0.567 0.567

(0.034) (0.039) (0.045) (0.047) (0.021) (0.016) (0.014) (0.014)

100 0.569 0.566 0.568 0.567 0.569 0.569 0.568 0.567

(0.018) (0.019) (0.020) (0.022) (0.015) (0.011) (0.010) (0.008)

200 0.568 0.566 0.565 0.565 0.569 0.569 0.568 0.567

(0.010) (0.010) (0.010) (0.011) (0.011) (0.009) (0.007) (0.006)

System GMM (default) System GMM (collapsed)

N

10 0.579 0.563 0.587 0.610 0.555 0.543 0.546 0.555

(0.251) (0.282) (0.308) (0.329) (0.149) (0.179) (0.170) (0.171)

25 0.550 0.557 0.562 0.567 0.546 0.550 0.551 0.548

(0.080) (0.088) (0.101) (0.102) (0.038) (0.041) (0.043) (0.044)

50 0.548 0.548 0.551 0.552 0.542 0.547 0.548 0.551

(0.039) (0.044) (0.048) (0.050) (0.025) (0.020) (0.017) (0.016)

100 0.547 0.549 0.550 0.548 0.544 0.544 0.547 0.548

(0.022) (0.022) (0.022) (0.026) (0.018) (0.015) (0.012) (0.011)

200 0.548 0.550 0.551 0.552 0.554 0.550 0.549 0.546

(0.012) (0.013) (0.012) (0.012) (0.011) (0.009) (0.009) (0.008)



instrumentations exhibit slight downward biases for small N and large T . Both of the collapsed-

set estimators, on the other hand, recover the true parameter value across virtually all values of N

and T .

Table III reports the coefficient estimates of the endogenous variable. Difference GMM consis-

tently overestimates the true parameter by around 10% (with estimates around 0.565 vs the actual

value of 0.5). System GMM produces estimates slightly closer to the true value for larger N , gen-

erally around 0.545. System GMM with collapsed instruments shows the best overall performance

for this parameter, with the most accurate point estimates and the smallest standard errors.

For all three types of parameters, estimators employing collapsed instrument sets consistently

outperform their default counterparts. System GMM with collapsed instruments demonstrates the

best overall performance, particularly for the autoregressive and endogenous variable parameters.

As the number of time periods increases, the advantages of collapsed instruments become more

evident. The benefits of collapsed instruments are especially pronounced with larger T values, as

expected.

5. Conclusion

Our Monte Carlo results provide clear guidance for applied macroeconomists working with dy-

namic panel data. As the cross-sectional dimension (N ) increases, all estimators show improved

accuracy, but the choice of instrument approach remains consequential even in large samples.

Collapsed instruments consistently outperform default instruments across virtually all configura-

tions, providing more accurate estimates and smaller standard errors. The benefits of collapsing

the instrument set increase the larger the number of time periods. System GMM with collapsed

instruments appears to be the best overall performer, especially for endogenous variables. For

practitioners, these results provide clear guidance for default estimation practices across the full

spectrum of GMM estimator choices. Since researchers typically use standard software settings

without extensive sensitivity testing, establishing empirically-supported defaults is crucial. Our

comprehensive comparison of both Difference GMM and System GMM variants demonstrates

that System GMM with collapsed instruments should serve as the standard default for dynamic

panel estimation, regardless of N and T .
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