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1 Introduction

Governments routinely implement policies that affect the risks that a society faces.

For example, barriers are installed to lessen the risk of a terrorist driving a vehicle

into pedestrians, dikes are built to reduce the risk of flooding, and carbon taxes

are imposed to slow down the rise in the temperature of the Earth’s atmosphere so

as to reduce the likelihood of the serious harms that result from climate change.

Policies differ in the degree to which they change the expected aggregate amount of

a harm and how it is distributed across the population. A consequentialist approach

to evaluating the relative desirability of different policies that affect these kinds of

social risks does so by ranking the possible distributions of the resulting harms. If

this ranking, or an index representing it, takes account of the equity of the resulting

distribution of risks, it is a measure of social risk equity.

The measurement of social risk equity has its origins in the work of Keeney

(1980a,b,c). The analysis of social risk equity has been further developed by Broome

(1982), Fishburn (1984), Fishburn and Sarin (1991), Fishburn and Straffin (1989),

Gajdos et al (2010), Harvey (1985), Keeney and Winkler (1985), and Sarin (1985),

among others. While these analyses apply to any kind of social harm, for the most

part, the harm that they consider is death. Our analysis also applies to any socially

risky situation in which a harm may affect some, but not necessarily all, of the

society in question but, for concreteness, we, too, suppose that this harm is death.

The set of individuals who die as a result of their exposure to the risk is a fatality

set and a social risk distribution is a probability distribution over all of the possible

fatality sets. Social risk distributions are ranked using a social risk equity preference

ordering. Not all of the information about a social risk distribution may be regarded

as being relevant when determining the social preference relation. For example,

Fishburn and Straffin (1989), Keeney and Winkler (1985), and Sarin (1985) only

take account of the risk profiles for individuals and for fatalities. The former lists the

likelihoods of each person dying, whereas the latter is the probability distribution

over the number of fatalities. These statistics can be computed from a social risk

distribution, but in doing so, some information is lost.

Gajdos et al (2010) propose also taking into account a concern for shared des-

tinies; specifically, with the number of other individuals with whom someone per-

ishes. Chew and Sagi (2012) describe this concern as being one of ex post fairness.

For example, for a given probability of there being k fatalities, it might be socially

desirable to have this risk spread more evenly over the individuals. As Example 3

in Gajdos et al (2010) demonstrates, it is possible for the distribution of how many

people someone dies with to differ in two social risk distributions even though the

risk profiles for individuals and for fatalities are the same in both distributions. As a

consequence, a concern for shared destinies cannot be fully captured if one restricts

attention to the information provided by the likelihoods of each person dying and

the probability distribution over the number of fatalities.1

1 There are other dimensions of social risk equity that may be of concern, such as dispersive equity

and catastrophe avoidance. There is a concern for dispersive equity if account is taken of individual
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The distribution of shared destiny risks can be expressed using a shared destiny

risk matrix whose entry in the kth row and ith column is the probability that person

i dies in a group containing k individuals. In the approach developed by Gajdos

et al (2010), if two social risk distributions result in the same shared destiny risk

matrix, they are regarded as being socially indifferent. Because the risk profiles for

individuals and for fatalities can be computed from the information contained in a

shared destiny risk matrix, their approach to evaluating social risks can take account

of these two risk profiles, not just a concern for shared destinies. In effect, in their

approach to social risk evaluation, ranking social risk distributions is equivalent to

ranking shared destiny risk matrices.

The entries of a social destiny risk matrix are probabilities, and so all lie in the

interval [0,1]. There are three other independent properties that such a matrix must

necessarily satisfy as a matter of definition: (i) nobody’s probability of dying can

exceed 1, (ii) the probability that there are a positive number of fatalities cannot

exceed 1, and (iii) nobody can have a probability of dying in a group of size k that

exceeds the probability that there are k fatalities. A social destiny risk matrix that

satisfies these properties is said to be admissible. Starting with a social risk distribu-

tion, we can compute the entries in the corresponding shared destiny risk matrix. A

shared destiny risk matrix that can be generated in this way from a social risk dis-

tribution is said to be feasible. A feasible shared destiny risk matrix is necessarily

admissible. The question we address is whether there are admissible shared destiny

risk matrices that are not feasible. We show that there are not. Thus, a shared destiny

risk matrix is admissible if and only if it is feasible.

In order to establish this result, we develop an algorithm that shows how to con-

struct a social risk distribution from a shared destiny risk matrix in such a way that

the resulting distribution can be used to generate the matrix. It is easy to determine

if a shared destiny risk matrix is admissible but, as our algorithm makes clear, con-

firming that it is also feasible by finding a social risk distribution that generates it

may be a formidable undertaking. However, if our objective is only to socially rank

the feasible shared destiny risk matrices, our result tells us that this is equivalent

to socially ranking the admissible shared destiny risk matrices. We do not need to

know how to generate these matrices from social risk distributions in order to know

that they are feasible; we only need to know that they are admissible.

In Section 2, we introduce the formal framework used in our analysis. The algo-

rithm employed to determine a social risk distribution that generates a given admis-

sible shared destiny risk matrix is presented in Section 3. We illustrate the operation

of this algorithm in Section 4. We prove that a shared destiny risk matrix is admis-

sible if and only if it is feasible in Section 5.

characteristics such as gender, race, or geographic location in addition to the individuals’ exposures

to social risks. See Fishburn and Sarin (1991) for an analysis of the evaluation of social risks that

allows for dispersive equity. Bommier and Zuber (2008), Fishburn (1984), Fishburn and Straffin

(1989), Harvey (1985), and Keeney (1980a) consider social preferences for catastrophe avoidance.

We do not examine dispersive equity or catastrophe avoidance here.
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2 Shared Destiny Risk Matrices

There is a society of n ≥ 2 individuals individuals who face a social risk. Let

N = {1, . . . ,n} be the set of these individuals. A fatality set is a subset S ⊆ N con-

sisting of the set of individuals who ex post die as a consequence of the risk that

this society faces. There are 2n possible fatality sets, including ∅ (nobody dies) and

N (everybody dies). A social risk distribution is a probability distribution p on 2n,

with p(S) denoting the ex ante probability that the fatality set is S. We suppose that

only this probability distribution is relevant for the purpose of social risk evaluation.

The set of all such probability distributions is P .

For each k ∈ N, let M(k) ∈ [0,1]n denote the vector whose ith component M(k, i)
is the ex ante probability that person i will die when there are exactly k fatalities. A

shared destiny risk matrix is an n×n matrix M whose kth row is M(k). Let n̄(k) be

the number of positive entries in M(k). The risk profile for individuals is the vector

α ∈ [0,1]n, where

α(i) =
n

∑
k=1

M(k, i), ∀i ∈ N, (1)

which is the ex ante probability that person i will die. The risk profile for fatalities

is the vector β ∈ [0,1]n, where

β (k) =
1

k

n

∑
i=1

M(k, i), ∀k ∈ N, (2)

which is the ex ante probability that there will be exactly k fatalities. Note that a risk

profile for fatalities does not explicitly specify the probability that nobody dies. The

probability that there are no fatalities is 1−∑
n
k=1 β (k).

By definition, each of the entries of M is a probability and so must lie in the

interval [0,1]. Hence, each of components of α and β must be nonnegative as they

are sums of entries in M. There are three other restrictions on M. They are

α(i)≤ 1, ∀i ∈ N, (3)

n

∑
k=1

β (k)≤ 1, ∀k ∈ N, (4)

and

M(k, i)≤ β (k), ∀(k, i) ∈ N2
. (5)

The first of these requirements is that no person can die with a probability greater

than 1. The second is that the probability that there are a positive number of fatalities

cannot exceed 1. The third is that nobody’s probability of dying in a group of size k

can exceed the probability of there being k fatalities. Of course, it must also be the

case that

β (k)≤ 1, ∀k ∈ N. (6)
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That is, the probability that there are a particular number of fatalities cannot exceed

1. However, (6) follows from (4) because all probabilities are nonnegative. A social

risk equity matrix M is admissible if it satisfies (3), (4), and (5).

It is obvious that M must satisfy (3) and (4), but the necessity of (5) is less so

because there is more than one way that someone can die with k−1 other individuals

when k > 1. To see why (5) is required, suppose, on the contrary, that M(k, i) >
β (k) for some i ∈ N. Then, because M(k, i) is the probability that person i perishes

with k− 1 other individuals, it must be the case that ∑ j 6=i M(k, j) > (k− 1)β (k)).

Hence, ∑
n
i=1 M(k, i) > kβ (k). It then follows that β (k) = 1

k ∑
n
i=1 M(k, i) > β (k), a

contradiction.

For each k ∈ N, T (k) = {S ∈ 2n||S| = k} is the set of subgroups of the society

in which exactly k individuals die. For each (k, i) ∈ N2, S (k, i) = {S ∈T (k)|i ∈ S}
is the set of subgroups in which exactly k people die and i is one of them. A shared

destiny risk matrix M is feasible if there exists a social risk distribution p ∈ P and

an n× n matrix Mp such that M(k, i) = Mp(k, i), where Mp(k, i) = ∑S∈S (k,i) p(S).
That is, Mp(k, i) is the probability that there are k deaths and i is one of them when

the social risk distribution is p.

3 The Decomposition Algorithm

By construction, for any p ∈ P , Mp is an admissible shared destiny risk matrix. In

other words, any feasible shared destiny risk matrix is admissible. The question then

arises as to whether feasibility imposes any restrictions on M other than that it be

admissible. We show that it does not.

For any admissible shared destiny risk matrix M, we need to show that there

exists a social risk distribution p∈P such that Mp =M. This is done by considering

each value of k separately. For each k ∈ N, we know that the probability of having

this number of fatalities is β (k). We need to distribute this probability among the

subgroups in T (k) (the subgroups for which there are k fatalities) in such a way

that the probability that person i dies in a group of size k is M(k, i). The resulting

probabilities for the subgroups in T (k) is called a probability decomposition. Put

another way, for each i ∈ N, we need to distribute the probability M(k, i) among

the subgroups in S (k, i) (the subgroups containing person i for which there are k

fatalities) in such a way that the amount πS allocated to any S ∈ S (k, i) is the same

for everybody in this group. The value πS is then the probability that the set of

individuals who perish is S.

If M(k, i) = 0 for all i ∈ N (so n̄(k) = 0), then β (k) = 0, so we assign probability

0 to each S ∈ T (k). If k = n, only N is in T (n), so no decomposition is needed;

N is simply assigned the probability β (n). When β (k) 6= 0 and k < n, we construct

an algorithm that produces the requisite probability decomposition. The algorithm

proceeds through a number of steps, which we denote by t = 0,1,2, . . . . We show

that the algorithm terminates in no more than n̄(k) steps. The relevant variables in

each step are distinguished using a superscript whose value is the step number.
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The vector M̂(k) is a nonincreasing rearrangement of M(k) if M̂(k, i)≥ M̂(k, i+
1) for all k = 1, . . . ,n− 1. Whenever a vector of probabilities for the n individuals

is rearranged in this way, ties are broken in such a way that the original order of

the individuals is preserved. For example, if n = 3, in the rearrangement (2,1,1)
of (1,2,1), the first 1 is associated with person 1 and the second 1 with person 3.

Without loss of generality, we suppose that M(k) is initially ranked in nonincreasing

order. We now describe our algorithm.

Probability Decomposition Algorithm. The initial values of the relevant variables

are

M0(k) = M̂0(k) = M(k) = M̂(k)

and

β 0(k) = β (k).

Step 1. In Step 1, we assign a probability π1 to the first k individuals, which is the

set of individuals with the k highest probabilities in M̂0(k). After π1 is subtracted

from each of the first k components of M̂0(k), we are left with the fatality probability

β 1(k) = β 0(k)−π1

to distribute among the groups of size k using the probabilities in

M1(k) = M̂0(k)− (π1
, . . . ,π1

,0, . . . ,0).

Letting ρ0(k, i) denote the rank of individual i in M̂0(k), we define the vector

π1(k) = π1 · (I0
1 , I

0
2 , . . . , I

0
n ),

where I0
i = 1 if ρ0(k, i)≤ k and I0

i = 0 otherwise. Using π1(k), M1(k) can be equiv-

alently written as

M1(k) = M0(k)−π1(k).

We need to ensure that each of the probabilities in M1(k) is nonnegative. Be-

cause M̂0(k) is a nonincreasing rearrangement of M0(k) and M̂1(k, i) = M̂0(k, i) for

i = k+ 1, . . . ,n, it must therefore be the case that π1 ≤ M̂0(k,k). We also need to

ensure that none of these probabilities exceeds the fatality probability β 1(k) left

to distribute. This condition is satisfied by construction for the first k individuals.

Hence, because M̂0(k) is a nonincreasing rearrangement of M0(k), in order to sat-

isfy this condition, it is only necessary that M̂0(k,k+1)≤ β 1(k) = β 0(k)−π1. Both

of these requirements are satisfied by setting

π1 = min{M̂0(k,k),β 0(k)− M̂0(k,k+1)}.

By (5), M̂0(k,k) ≤ β 0(k). Therefore, π1 ≤ β 0(k) and, hence, β 1(k) ≤ β 0(k). Be-

cause β 1(k) = 1
k ∑

n
i=1 M1(k, i) and M1(k, i)≥ 0 for all i ∈ N, β 1(k)≥ 0.

Let S1 denote the first k individuals in M̂0(k). We choose p(S1) to be π1.
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If M1(k) = (0,0,0, . . . ,0), the algorithm terminates. Otherwise, it proceeds to the

next step.

Step t (t ≥ 2). The operation of the algorithm in this step follows the same basic

logic as in Step 1. The value of π t is chosen by setting

π t = min{M̂t−1(k,k),β t−1(k)− M̂t−1(k,k+1)}. (7)

Letting ρ t−1(k, i) denote the rank of individual i in M̂t−1(k), we define the vector

π t(k) = π t · (It−1
1 , It−1

2 , . . . , It−1
n ), (8)

where It−1
i = 1 if ρ t−1(k, i)≤ k and It−1

i = 0 otherwise.

We define Mt(k) and β t(k) by setting

Mt(k) = Mt−1(k)−π t(k) (9)

and

β t(k) = β t−1(k)−π t
. (10)

Analogous reasoning to that used in Step 1 shows that 0 ≤ β t(k)≤ β t−1(k).
Let St denote the first k individuals in M̂t−1(k). We choose p(St) to be π t .

If Mt(k) = (0,0,0, . . . ,0), the algorithm terminates. Otherwise, it proceeds to the

next step.

If the algorithm terminates and a group S with k members has not been assigned

a probability by the algorithm, we set p(S) = 0.

4 Examples of the Probability Decomposition Algorithm

The operation of the probability decomposition algorithm is illustrated with three

examples. In each of these examples, it is assumed that M is admissible. In the first

example, the algorithm is applied to the case in which nobody dies with anybody

else.

Example 1. Let k = 1 with M(1, i) > 0 for some i ∈ N. If M is feasible, for each

i ∈ N, we must have p({i}) = M(1, i). We show that the algorithm produces this

result. We first consider the case in which M(1, i)> 0 for all i ∈ N.

In Step 1, person 1 is the highest ranked individual in M̂0(1). Therefore, we

have β 0(1)− M̂0(1,2) = 1
1 ∑

n
i=1 M̂0(1, i)− M̂0(1,2) = ∑

n
i 6=2 M̂0(1, i) ≥ M̂0(1,1). It

then follows that π1 = M̂0(1,1) and, hence, p({1}) = M̂0(1,1) = M(1,1). We

have π1(1) = (M(1,1),0, . . . ,0) and so M0(1) is now replaced with M1(1) =
(0,M0(2), . . . ,M0(n)). Because M1(1,1) = 0, person 1 is never considered again

by the algorithm. There is fatality probability β 1(1) = β 0(1)−π1 = ∑
n
i=1 M(1, i)−

M(1,1) = ∑
n
i=2 M(1, i) left to allocate.

Step 2 uses the vector M̂1(1) Person 2 is the second highest ranked individual

in M0(1) and so is first ranked in M̂1(1). As in Step 1, π2 = M̂1(1,1) and, hence,
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p({2}) = M̂1(1,1) = M(1,2). We have π1(1) = (0,M(1,2),0, . . . ,0) and so M1(1)
is replaced with M2(1) = (0,0,M0(3), . . . ,M0(n)) and person 2 is never considered

again. There is fatality probability β 2(1) = β 1(1)−π2 = ∑
n
i=2 M(1, i)−M(1,2) =

∑
n
i=3 M(1, i) left to allocate.

More generally, person i ∈ N is singled out in Step i and assigned the probability

p({i}) =M(1, i). In Step n, Mn(1) = (0,0,0, . . . ,0), and so the algorithm terminates.

If M(1, i) = 0 for some i∈N, then the algorithm proceeds as above but terminates

in Step n̄(1)< n, where it is recalled that n̄(1) is the number of individuals for whom

M(1, i) is positive. For any individual i for whom M(1, i) = 0, when the algorithm

terminates, p({i}) is set equal to 0.

In the next two examples, individuals do not die alone. In these examples, all

probabilities are expressed in terms of percentages, so, for example, 5 is the proba-

bility 0.05.

Example 2. Let n= 7 and k = 4. We suppose that M0(4) =M(4) = M̂(4) = M̂0(4) =
(5,4,4,4,4,2,1). Consequently, β 0(4) = β (4) = 1

4 ∑
n
i=1 M(4, i) = 6.

Step 1. We have π1 = min{M̂0(4,4),β 0(4)− M̂0(4,5)}= 2. Therefore, π1(4) =
(2,2,2,2,0,0,0), M1(4) =M0(4)−π1(4) = (3,2,2,2,4,2,1), and β 1(4) = β 0(4)−
π1 = 6−2 = 4. Hence, p({1,2,3,4}) = π1 = 2.

Step 2. There are four individuals with the third highest probability in M1(4). Us-

ing our tie-breaking rule, individuals 1, 2, 3, and 5 have the first four probabilities in

M̂1(4). We thus have M̂1(4) = (4,3,2,2,2,2,1), so π2 = min{M̂1(4,4),β 1(4)−
M̂1(4,5)} = 2. Therefore, π2(4) = (2,2,2,0,2,0,0), M2(4) = M1(4)− π2(4) =
(1,0,0,2,2,2,1), and β 2(4) = β 1(4)− π2 = 4 − 2 = 2. Hence, p({1,2,3,5}) =
π2 = 2.

Step 3. There are two individuals with the fourth highest probability in M2(4).
The tie is broken in favour of person 1, so the first four individuals in M̂2(4) are 1,

4, 5, and 6. We have M̂2(4) = (2,2,2,1,1,0,0), so π3 = min{M̂2(4,4),β 2(4)−
M̂2(4,5)} = 1. Therefore, π3(4) = (1,0,0,1,1,1,0), M3(4) = M2(4)− π3(4) =
(0,0,0,1,1,1,1), and β 3(4) = β 2(4)− π3 = 2 − 1 = 1. Hence, p({1,4,5,6}) =
π3 = 1.

Step 4. The four individuals with the highest probabilities in M3(4) are 4,

5, 6, and 7. We have M̂3(4) = (1,1,1,1,0,0,0), so π4 = min{M̂3(4,4),β 3(4)−
M̂3(4,5)} = 1. Therefore, π4(4) = (0,0,0,1,1,1,1), M4(4) = M3(4)− π4(4) =
(0,0,0,0,0,0,0), and β 4(4) = β 3(4)− π4 = 1 − 1 = 0. Hence, p({4,5,6,7}) =
π4 = 1.

Because M4(4) = (0,0,0,0,0,0,0), the algorithm terminates in Step 4. The four

groups identified in Steps 1–4 are assigned positive probability. For any other set of

individuals S with four members, p(S) = 0. There are n!
k!(n−k)! =

7!
4!3!

= 35 possible

groups of of this size, so 31 of them are assigned a zero probability.

In Examples 1 and 2, in Step t, π t is set equal to M̂t(k,k). In Example 3, it is

instead sometimes set equal to β t−1(k)− M̂t−1(k,k+1).

Example 3. Let n= 3 and k = 2. We suppose that M0(2) =M(2) = M̂(2) = M̂0(2) =
(7,5,4). Consequently, β 0(2) = β (2) = 1

2 ∑
n
i=1 M(2, i) = 8.
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Step 1. We have π1 = min{M̂0(2,2),β 0(2)− M̂0(2,3)}= 4. Therefore, π1(2) =
(4,4,0), M1(2) = M0(2)−π1(2) = (3,1,4), and β 1(2) = β 0(2)−π1 = 8−4 = 4.

Hence, p({1,2}) = π1 = 4.

Step 2. The two individuals with the highest probabilities in M1(2) are 1 and 3.

We have M̂1(2) = (4,3,1), so π2 = min{M̂1(2,2),β 1(2)− M̂1(2,3)} = 3. There-

fore, π2(2) = (3,0,3), M2(2) = M1(2)− π2(2) = (0,1,1), and β 2(2) = β 1(2)−
π2 = 4−3 = 1. Hence, p({1,3}) = π2 = 3.

Step 3. There only two individuals (2 and 3) left with positive probabilities, and

these probabilities are the same. Hence, this group of individuals must be assigned

the unallocated fatality probability, so p({2,3}) = 1. We confirm that the algorithm

produces this result. We have M̂2(2) = (1,1,0), so π3 = min{M̂2(1,2),β 2(2)−
M̂2(2,2)}= 1. Therefore, π3(1) = (0,1,1), M3(2) = M2(2)−π3(2) = (0,0,0), and

β 3(2) = β 2(2)−π3 = 1−1 = 0. Hence, p({2,3}) = 1, as was to be shown.

The algorithm terminates in Step 3. All subgroups of with two members are

assigned positive probability.

As these examples illustrate, each step of the algorithm identifies a subgroup with

k members and determines the probability that it is this group that perishes. For each

individual i in this group, this probability must be subtracted from whatever part of

the probability M(k, i) that remains unallocated at the end of the previous step. In

all three of the examples, at the end of the penultimate step of the algorithm, there is

a group of size k whose members all have the same probability left to distribute. In

the next section, we show that this is a general feature of the algorithm. When this

amount has been allocated as the probability of this group perishing together, we

have Mt(k) = (0, . . . ,0), and so the algorithm terminates because, for each i ∈ N,

the probability M(k, i) that person i dies in a group of size k has been distributed

among each of the groups of size k that include i.

The distribution of the probability in β (k) across the groups with k members need

not be unique. This is the case in Example 2 because there is more than one way

to rearrange the vector of fatality probabilities being considered in a nonincreasing

way in some of the steps. For example, if in Step 2 in this example, with the tie-

breaking rule used in our algorithm, individuals 1, 2, 3, and 5 are regarded as having

the four highest probabilities in M1(4). However, we could have used a tie-breaking

rule that selects individuals 1, 2, 5, and 6 instead, in which case p({(1,2,5,6)})> 0,

which is not the case with the tie-breaking rule used in the algorithm. Feasibility of

a shared destiny risk matrix M only requires that there there exists a social risk

distribution p such that Mp = M, not that this distribution be unique.

5 The Equivalence of Admissibility and Feasibility

In order to show that an admissible shared destiny risk matrix is feasible, we first

establish a number of lemmas that identify some important properties of the proba-

bility decomposition algorithm. In each of our lemmas, we suppose that k 6= n and

that the probability decomposition algorithm is being applied to the kth row M(k)
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of an admissible shared destiny risk matrix M for which the probability β (k) that

there are k fatalities is positive.

Lemma 1 shows that in each step of this algorithm, analogues of (2) and the

admissibility restriction in (5) hold.

Lemma 1. In any Step t of the algorithm,

β t(k) =
1

k

n

∑
i=1

Mt(k, i) (11)

and

0 ≤ Mt(k, i)≤ β t(k), ∀i ∈ N. (12)

Proof. For any k 6= n, at the end of Step t −1 of the algorithm, from the probability

β (k) that there will be exactly k fatalities, there is still β t−1(k) left to allocate. In

Step t, π t is subtracted from the first k components of M̂t−1(k) and 0 from the other

n−k components. Hence, by (2), (9) and (10), at the end of Step t, the amount from

β (k) left to allocate is (11).

Because π t ≤ M̂t−1(k,k), Mt(k, i) ≥ 0 for all i ∈ N. The argument used to show

that Mt(k, i) ≤ β t(k) for all i ∈ N is the same as the argument used in Section 2 to

show that (5) holds but with Mt(k, i) substituting for M(k, i) and β t(k) substituting

for β (k). ⊓⊔

In order for the probability decomposition algorithm to distribute all of the prob-

ability β (k) that there are k fatalities among the subgroups of size k, the algorithm

must terminate in a finite number of steps. Lemma 2 shows that this is the case if

the algorithm reaches a step in which there are k positive entries left to distribute.

Lemma 2. The algorithm terminates in Step t + 1 if there are k positive entries in

Mt(k).

Proof. By Lemma 1, (11) and (12) hold. If Mt(k) contains k positive entries, (11)

and (12) imply that they are all equal to β t(k). Thus, the algorithm terminates in the

next step because π t = β t(k) is subtracted from M̂t(k, i) for each i = 1, . . . ,k, and so

Mt+1(k) = (0, . . . ,0). ⊓⊔

There are n̄(k) individuals who have a positive probability of dying in a group of

size k. Lemma 3 shows that the probability decomposition algorithm terminates in

a finite number of steps that does not exceed this value.

Lemma 3. The algorithm terminates in at most n̄(k) steps.

Proof. If k = n̄(k), then Lemma 2 applies with t = 0, so the algorithm terminates in

Step 1.

Now, suppose that k < n̄(k). From (7), we know that in Step t of the algorithm, π t

is either M̂t−1(k,k) or β t−1(k)− M̂t−1(k,k+1), whichever is smallest. We consider

two cases distinguished by whether the first of these possibilities holds for all t or

not.
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Case 1. For each Step t of the algorithm, π t = M̂t−1(k,k). Then, by (7)–(9), Mt(k)
has at least one more 0 entry than Mt−1(k). Thus, Mt(k) has at least n− n̄(k)+ t

entries equal to 0 and, hence, has at most k positive entries in Step n̄(k)− k. It

follows from (11) and (12) (which hold by Lemma 1) that there is no Step t such

that the number of positive entries in Mt(k) is positive but less than k. Therefore,

because the algorithm subtracts a common positive amount of probability from k

individuals in each step, for some t ≤ n̄(k)− k, Mt(k) has exactly k positive entries,

which, by Lemma 2, implies that the algorithm terminates in at most n̄(k)− k+ 1

steps. Because k < n̄(k), this upper bound is at most n̄.

Case 2. In some Step t of the algorithm, π t 6= M̂t−1(k,k). Let t∗ be the first step

for which this is the case. By (7), we then have that π t∗ = β t∗−1(k)−M̂t∗−1(k,k+1).
Let i∗ the individual for whom ρ t∗−1(k, i∗) = k+ 1. That is, i∗ is the individual for

whom Mt∗−1(k, i∗) = M̂t∗−1(k,k + 1). Because π t∗ = β t∗−1(k)− M̂t∗−1(k,k + 1),
by (10), β t∗(k) = M̂t∗−1(k,k+1). Because Mt∗(k, i∗) = Mt∗−1(k, i∗), it follows that

Mt∗(k, i∗) = β t∗(k).
By (11) and (12), there cannot be more that k entries in Mt(k) which are at least

as large as β t(k). Hence, i∗ must occupy one of the first k ranks in Mt∗(k) and so

i∗’s probability is reduced by π t∗ in Step t∗. By (10), for all t, π t = β t−1(k)−β t(k).
Therefore, Mt∗+1(k, i∗) = β t∗+1(k). Iteratively applying the same reasoning in each

of the subsequent non-terminal steps of the algorithm, we conclude that Mτ(k, i∗) =
β τ(k) for any Step τ for which τ ≥ t∗ which is not a terminal step.

Because there cannot be more that k entries in Mτ(k) which are at least as large

as β τ(k), we now know that for each τ ≥ t∗, i∗ has a rank not exceeding k in Mτ(k).
Hence, in any Step t∗∗ for which t∗∗ > t∗, the individual who occupies rank k+ 1

in M̂t∗∗−1(k) is someone, say i∗∗, who is different from i∗. Reasoning as above, if

π t∗∗ 6= M̂t∗∗−1(k,k) , then Mτ(k, i∗∗) = β τ(k) for any Step τ for which τ ≥ t∗∗ which

is not a terminal step. Furthermore, both i∗ and i∗∗ have ranks not exceeding k in

Mτ(k) for any such τ .

By an iterative application of the preceding argument, we conclude that there can

be at most k steps in which π t 6= M̂t−1(k,k). Because Mt(k) has at least one more

0 entry than Mt−1(k) in each Step t for which π t = M̂t−1(k,k), there are at most

n̄(k)− k−1 values of t for which (i) π t = M̂t−1(k,k) and (ii) there are at least k+1

positive entries in Mt(k). Thus, the algorithm terminates in at most n̄(k) steps. ⊓⊔

In each step of the algorithm, a group of size k is identified and assigned a prob-

ability. Lemma 4 shows that no group is considered in more than one step of the

algorithm and, therefore, no group is assigned more than one probability.

Lemma 4. No group of individuals with k members is assigned a probability in more

than one step of the algorithm.

Proof. We need to show that for all Steps t and t ′ of the algorithm for which t 6= t ′,

(It
1, I

t
2, . . . , I

t
n) 6= (It ′

1 , I
t ′

2 , . . . , I
t ′

n ). On the contrary, suppose that there exist t < t ′ for

which (It
1, I

t
2, . . . , I

t
n) = (It ′

1 , I
t ′

2 , . . . , I
t ′

n ). Let S be the set of individuals for whom the

value of these indicator functions is 1. Because both π t and π t ′ are positive, by (7),

we must have π t ≥ π t +π t ′ , which is impossible. That is, both π t and π t ′ must be
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subtracted in the same step from the probabilities of the members of S that have yet

to be allocated when this group is the one being considered. ⊓⊔

With these lemmas in hand, we can now prove our equivalence theorem.

Theorem. A shared destiny risk matrix M is admissible if and only it is is feasible.

Proof. Because a feasible shared destiny risk matrix is necessarily admissible, we

only need to show the reverse implication. Suppose that M is an admissible shared

destiny risk matrix. For each k 6= n for which β (k) > 0, Lemmas 3 and 4 im-

ply that the probability decomposition algorithm assigns a probability p(S) ∈ [0,1]
to each group S ∈ T (k) (the set of groups with k members) in such a way that

∑S∈T (k) p(S) = β (k). If k 6= n and β (k) = 0, we let p(S) = 0 for all S ∈ T (k). Be-

cause T (n) = {N}, we set p(N) = β (n). Finally, we set p(∅) = 1−∑
n
i=1 β (k).

The function p : 2n → [0,1] is therefore a social risk distribution. By construc-

tion, the corresponding shared destiny risk matrix Mp is the same as M because

Mp(k, i) = ∑S∈S (k,i) p(S) = M(k, i) for all (k, i). Hence, M is feasible. ⊓⊔
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