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Abstract

We compare different methods for reducing the size distortion, when testing linear

restrictions on the cointegration vectors (using the Maximum Likelihood framework). We
compare the Bartlett correction as derived by Johansen (2000), the Bootstrap and the fast
double bootstrap (Davidson, R., and J.G. MacKinnon (2000)). After a Monte Carlo study of a
5 variable DGP we conclude that (1) asymtptotic tests are so distorted, that they should never
be used (2) Bartlett corrected tests do go a long way in correcting the size distortion, but do
not eliminate it totally. It should therefore be used with care.(3) the bootstrap and fast double
bootstrap do most to correct the size distortion and suffer from a marginally larger power loss
than the Bartlett correction. They can definitely be used, especially in the many relevant
cases, for which a Bartlett correction has not yet been derived.
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1. Introduction

The small sample properties of tests on long-run coefficients in cointegrated systems are
still a matter of concern to applied econometricians. Since the asymptotic procedures
proposed by Johansen (1991) have been shown to suffer from severe size distortion, two
natural and complementary solutions have been proposed: (i) applying Bartlett correc-
tions to the test statistics, in the hope that the corrected statistic will follow a small sample
distribution closer to the asymptotic one, and thus bring actual sizes closer to the nominal
sizes (Johansen, 2000); (i7), trying to estimate the actual small sample distribution by the
bootstrap, a computer-intensive technique strictly linked with the Edgeworth expansion
(Fachin, 2000, Gredenhoff and Jacobson, 2001, and references therein). For the time be-
ing, no definite solution has however appeared. The primary aim of this paper is precisely
that of comparing size and power properties of the bootstrapped tests on the coefficients
of the cointegration relations.

2. Bartlett-corrected and Bootstrap Tests on Cointegrating Coefficients

The 1dea behind the Bartlett correction is both simple and appealing. Suppose the aim
is testing an hypothesis on a subset 8 of the parameters ©, Hy : & = 6°. In regular
cases, the LR test statistic S has an expected value of £/ [-2In(LR)| = h (1 + 79 (0)) +

O (%),where h denotes the number of restrictions tested. Then dividing the test statistic .S

by (1 + % g (0)) we may obtain the modified test statistic Sp and expect the resulting dis-

tribution to be closer to a x? distribution. This division is called a Bartlett correction and
% g (0) will be referred to as the Bartlett factor. Johansen (2000) derived the Bartlett cor-
rection for three different kind of hypotheses on 3: (1) 3 = /3°, a simple hypothesis on all
the cointegration vectors; (2) 3, = 3} where/3! are the first r; relations (1 < 7, < 7) and
the other cointegration relations are unrestricted; (3) 5 = H where H isa (r X s) matrix
of full rank and s < 7. This hypothesis implies the same restriction on all relations in /3.
The problem with the Bartlett correction is that it is extremely difficult to derive. At the
opposite, the great advantage of the bootstrap is that in principle it can offer immediate
solutions to new problems. However, in practice its ability to deliver good alternatives
when reliable small sample parametric procedures are lacking must be accurately tested
before its use may be recommended.

The general idea underlying bootstrap tests is to assess the value of the test statistic s
obtained from the empirical analysis on the basis of the distribution of a large number of
statistics s* computed from suitably constructed pseudodata, with the null hypothesis of
the former consistent with the data generating process (DGP) of the latter. To this end, Hy
may be imposed when generating the pseudodata, or, vice versa, the chosen DGP taken
as the null hypothesis (as recommended by Hall, 1992). In both cases, Hj is true for the
pseudodata, and thus, assuming for simplicity a one-sided test, the proportion of s* more
extreme than s in the relevant direction is a natural estimate of the p-value of the test. With
cointegrated VARs and some hypothesis on the long-run coefficients H, : 3 = 3°, the
two approaches entail respectively: (a) estimating a VAR constrained under H, : 8 = 3°,
generating the pseudodata on the basis of the estimated constrained coefficients and a set



of random noises (we will discuss the choice of these below), and testing Hy : 3 =
3% both on the original data and on the pseudodata; (b) estimating an unconstrained VAR,
generating the pseudodata on the basis of the estimated unconstrained coefficients and a
set of random noises, testing Hy : B = 3° on the original data and H{ : 3 = B (where
3 are the unconstrained estimates of [3) on the pseudodata. So far, approach (a) has been
favoured with no exception in the applications of interest here. However, a point of crucial
importance for testing in the maximum likelihood estimation of cointegrated VARs seems
to have gone unnoticed: although both approaches are valid and asymptotically equivalent
under H,, this is not true any more when it is false!. Thus, we will consider bootstrap
tests of type (b). Defining ® the entire parameter set of the VAR and assuming we are
interested in running a one-sided test on a subset 8, with Hy: 8 = 6°, the general structure
of the bootstrap test we shall implement is thus the following:

1. Estimate VAR on data X; for given cointegrating rank obtain estimates O, residuals
&, and test statistic s for the hypothesis Hy : 8 = 8°

2. Construct pseudodata: X* = ¢(@, g*), e* drawn at random with replacement from
egor NID.

3. Estimate VAR on pseudodata X*; obtain coefficients ©* and test statistic s* for the
hypothesis Hj: 8 = 6

4. Repeat 2-3 a large number of times;

5. Compute bootstrap p-value: p* = prop(s* > s).

As mentioned in the introduction, Davidson and MacKinnon (2000) recently put forth
a computationally cheap double bootstrap procedure which may deliver results superior
to the standard bootstrap just outlined, and which we shall thus examine. We refer to
their paper for a discussion of the fast double bootstrap p-value of type I (their (and our)
prefered measure) and that of type IL.

3. Monte Carlo Experiment

31 Design

On the basis of the simulation results reported by Gredenhoff and Jacobson (2001) and
Fachin (2000), the key characteristics of the DGP to be controlled in the experiments are
the dimension of the system, i.e. number of variables and lags, and its long-run structure,
1.e. number of the cointegrating relationships and the speed at which the system adjusts
to them. Estimation of systems of higher dimension (both in terms of number of variables
and lags) demand more from the data, and thus it is (ex-post) not surprising to see that both

ITo see this, consider the case of a test Ho : 3 = 3° in a model without lags and just one cointegration
vector. If this vector is misspecified, then 3°' X, , is clearly an 7(1) process, whereas AX; is 7(0). The
only congruent values for the loading factors « are therefore zero. Hence all the element of the matrix

= @B" equal zero (asymptotically) and the rank of such a matrix is O not 1. If one were to use this
matnx for the Bootstrap DGP, one would generate just random walks without any cointegration.



the asymptotic test and the bootstrap test proposed by Gredenhoft and Jacobson (2001)
perform better in smaller systems. A crucial remark here is that the simple bivariate
DGPs employed in virtually all simulation studies do suffer from loss of generality, a
fact not suspected so far. The experimental design adopted here will thus generalize to
a multivariate system the classical DGP used by a number of studies starting with Engle
and Granger (1987), which allows an easy control of the speed of adjustment. We shall
consider systems including p = 5 random variables and with » = 1 or 2 cointegrating
relationships. Letx; = [z, ... x| be the column vector of the realizations of the random
variables of interest at time t = 1,...,7 , u; = [uy, ... U] the errors, €, = [g14. .. x]
the noise, whose stochastic structure will be discussed in detail below, and 7 a time trend.
Our DGP is then given by

Gx;+ pr =y (la)

H

Pu, = ¢ (1b)
with
G=[.v = [%‘1--'%‘47
= diag(p), ¢ = | 6:(L) ¢o(L) 6s(L) ¢u(L) 4(I) |.

Although the Bartlett corrections do depend on the parameters of the system, in order
to keep the size of the experiment within manageable dimensions in the size simulations
the cointegrating coefficients will be kept fixed across trials to either zero or 1, with the
vectors resembling quite closely those used by Haug (1996), while in the power simu-
lations we shall consider a few values in the range [0.5,1.5]. Given that we are using a
full-information method we do not need to worry about endogeneity; we shall thus con-
sider a very simple structure, with one stochastic trend (X,) transmitted to the first
variables of the system, while the remaining p —  — 1 follow independent random walks.
The details in the two cases are as follows:

(@ r=1

Y =[1 000 B5]57%=[01000];%=[00100];
Y=[00010];9=[00001];
p=[0010000];

¢1(L) = (Lot L, ... ;‘PkLk)%
L) = ¢3(L) = ¢4(L) = ¢5(L) = (17 _L)-

')/2:{0 100 ﬂ25};alltheother,@’sasincase (a).
p=[001 001 00 0];

¢1(L) = ¢o(L) = (1,01, ... ;‘PkLk)%
¢ (L) = ¢4(L) = ¢5(L) = (17 _L)-



The values taken by the two free parameters (3,5 and (3, in the various experiments
will be detailed below. The order k of the autoregressive polynomial governing the dy-
namic structure of the noise in the cointegrating relationships will be set to either 2 or
4; in the main block of experiments the sum of the coefficients (on which depends the
spectral mass at zero frequency, governing the speed of adjustment to long-run equilib-
rium) will be kept fixed at ¢ = 0.7 so to examine the performances of the tests in rather
unfavourable conditions at the same avoiding regions too close to non-stationarity. The
individual coefficients of the lag polynomial will be fixed at the following values, chosen
so to have a large part of the adjustment taking place in the first periods:

() k=2:¢,(L)=(1,-%L,—%£L?);

(i) k=4:¢,(L)=(1,—%¥L,—$L* —& L% —&LY);

where j =1,... 7.

Some simple considerations will allow great simplification of the design as far as the
¢'s are concerned. First of all, in previous work on the related topic of stationary VARs
(Fachin and Bravetti, 1996) one of the authors of this paper found that the shape of the dis-
tribution of the shocks does not appear to have a significant impact on the performances of
asymptotic procedures. Further, the expectation that with a full-information method, their
covariance structure should not matter either has been confirmed in the case of a simple
bivariate DGP by Fachin (2000). We shall thus assume c= [g ...5,] ~ MNID(0,1,).
The last aspect to be discussed is sample size. In order to shed some light on both the per-
formances which can be expected in empirical work and on the asymptotic properties of
the tests we shall consider a base case 7" = 100, with a control experiment replicated with
T = 400. Finally, the number of both Monte Carlo replications and bootstrap redraw-
ings has been fixed to 500: on the basis of previous work and some pilot experiments we
concluded that the gain in precision deliver by higher numbers of either was not worth
the higher computing costs and longer calendar time required. At 0.05 the Monte Carlo
standard error will thus be about 0.010.

Although in principle both Wald and LR tests might be used, we shall limit the ex-
periments to the latter in order to facilitate comparisons with other published results. The
tests will be applied to the hypothesis that one or more of the cointegrating vectors are
known.

The cointegrating vectors will be fixed in the DGP (3,) and in the null hypothesis H
(3Y) according to the following scheme:

e size simulations:

r =1, one tested vector: ,8(1):,81:[1 0001 0.01};
7":2,onetestedvector:,8(1):,81:[1 000 1 0.01};[32:[0 1001 0.01};
r = 2, two tested vectors: 3% = 3, = [1 0 0 0 1 o001 }, B, = B) =

[0 1001 0.01};

e power simulations (main block; a power curve will also be computed for a specific
case, see below):



7 = 1, one tested vector: ﬁ‘f:[l 000 1 0.01}7[31:[1 000 05 0.01}

r:2,onetestedvector:ﬁ‘1’:[1 000 1 0.01}7[31:[1 000 05 0.01};
ﬁQZ[[o 1001 0.01”;

r =2, twotested vectors: 3) = [1 0 0 0 1 001|,8,=[1 0 0 0 05 001 |;

ﬁg:[[o 1001 0.01}})[32:[[0 100 1 001

Finally, in order to keep the mass of results within manageable limits we shall report
results relative to a few specific cases for the case of rank = 1, one tested vector only (in
other terms, the combination rank = 1, one tested vector, 1" = 100, ¢ = 0.7, k = 2 will
be taken as the reference case). More specifically, we will test the effect of a higher speed
of adjustment (¢ = 0.4),larger sample size (1" = 400) and richer dynamic structure of the
VAR (k = 4) as well as compute a power curve considering for 3,5 € [0.5,1.50], with
3 = 1 as usual.

32 Results

The simulations lead to the following picture (some of the results are collected in the
tables 1-6 at the end of the paper):

1. The size correction in the standard case of none of the three methods is perfect:
the horrible asymptotic size of 66% (at the nominal level of 5%) gets reduced to
between 26% and 35% in the case of a simple hypothesis on the whole space (1
cointegration vector). In practical circumstances the second experiment (1 of the 2
vectors known) is more interesting. The size corrections work better in this case.
There is some power loss in all cases, but power keeps up very well.

2. When the sample size increases to 400 all small sample corrections work properly,
whereas the aysmptotic size is still 11%

3. Increasing the VAR length greatly increases all problems.
4. Faster adjustment to equilibrium improves all procedures.
5. All methods have very steep power curves, which is highly desirable

6. If we were to base the Bartlett correction and Bootstrap on the restricted model,
then the power of the tests declines dramatically. Note that the Bartlett correction
is not even defined if one of the restricted roots is explosive, which happens in up
to 34% of the cases.

4. Conclusions

We have compared different variants of bootstrap and Bartlett-corrected tests in a DGP
which is relatively unfavourable, but reproduces some features of real life empirical appli-
cations: a relatively large system (5 variables and 2 or 4 lags), and rather slow adjustment
to long-run equilibrium. With such a complex DGP the caveats common to all simulation



studies are even more important than usual. Further, the type of tests examined assumes
full knowledge of the tested cointegrating vectors, a rare event in practice: however, they
are the only tests for which the Bartlett correction is available. With all these caveats, our
recommendations are the following:

(7) Asymptotic tests should be used in no circumstance;

(i1) Bartlett-corrected tests may be used provided considerable caution is exercised,
as their Type I error is often much larger than the nominal size;

(717) Bootstrap tests, with a somehow lower size distortion than the Bartlett corrected
tests accompanied by limited power losses, may also be used; the fast double bootstrap
delivers the best performance, and thus it appears to be a powerful tool for applied work,
especially in the many cases when the Bartlett correction is not available.

Furthermore we stress that all procedures should be based on the unrestricted esti-

mates.
Table 1

Size and Power: summary results
1 fo 2 cointegration vectors, test on 1 to 2 vectors
¢=0.7,T=100k =2

rank, tested vectors 1,1 2.1 2,2
Test size  power size  power size  power
Asymptotic 66.0 99.0 392 976 68.6 982
Bartlett 358 922 158 792 332 822
Bootstrap 320 86.0 152 772 282 746
FDB, 262 76.0 134 68.0 200 622
FDB, 278 81.8 142 714 23.6 682

nominal significance level: 5%,; FDB,: Fast Double Bootstrap type
power simulations:

case (1,1) Ho: B} =1 0 0 0 1|,DGP:B,=[1 0 0 0 03]
case (2,1): as case (1,1) with DGP: 3, = [ 01001 }
case (2,2): as case (2,1) with H, : 89 = [ 01001 }

Table 2
Increasing the sample size
1 cointegrating vector, test on 1 vector
¢ =0.7,T7 =100 and 400, k = 2

T 100 400
Test size  power size  power
Asymptotic 66.0 99.0 11.0 100.0
Bartlett 358 922 5.6 100.0
Bootstrap 320 86.0 6.2 1000
FDB, 262 76.0 5.6 100.0
FDB, 278 81.8 5.8 100.0

nominal significance level: 5%
power simulations: see lable 1



Table 3
Increasing the VAR length
1 cointegrating vector, test on 1 vector
¢=0.7,T=100,k=2and 4

lags 2 4
Test size  power size  power
Asymptotic 66.0 99.0 854 994
Bartlett 358 922 532 910
Bootstrap 320 86.0 392 820
FDB, 262 76.0 324 6838
FDB, 278 81.8 356 744

nominal significance level: 5%
power simulations: see lable 1

Table 4
Increasing the speed of adjustment
1 cointegrating vector, test on 1 vector
¢=07and 04,7 =100,k =2

¢ 0.7 0.4
Test size  power size  power
Asymptotic 66.0 99.0 33.0 996
Bartlett 358 922 170 976
Bootstrap 320 86.0 142 968
FDB; 262 76.0 108 944
FDB, 278 81.8 11.8 956

nominal significance level: 5%
power simulations: see lable 1



Table S5: Power curve
¢=0.7,T=100k =2

];SI Asymptotic Bartlett Bootstrap FDB, FDB,
15

0.5 99.0 922 86.0 769 8138
0.6 99.0 91.8 85.8 76.6 8138
0.7 99.0 91.2 86.6 76.6  81.6
0.8 99.0 91.4 86.4 76.0 81.6
0.9 98.8 88.8 83.6 73.8  78.0
0.92 98.8 86.4 80.8 720 75.6
0.94 98.0 832 75.6 652 702
0.96 93.8 722 66.4 546 586
0.98 81.4 50.6 43.4 352 378
1.0 66.0 358 32.0 26.2 27.8
1.02 81.6 50.6 454 380 418
1.04 94 .4 71.6 63.6 56.6 588
1.06 98.6 81.2 76.0 65.6 690
1.08 99.2 84.6 79.6 704 742
1.1 99.0 86.6 81.8 722 774
1.2 99.4 89.6 85.8 76.8  80.4
1.3 99.4 90.6 86.8 778 814
1.4 99.6 91.0 87.6 774 822
1.5 99.6 91.0 88.0 786 822

nominal significance level: 5%

Table 6: Power curve
Bootstrap data constructed from the constrained VAR estimates
¢=07,T=100k =2

Tost Explosive
Asymptotic Bartlett Bootstrap FDB, FDB, Roots

s (% of simulations)
0.5 99.0 11.4 15.8 102 122 3438
0.6 99.0 14.0 17.8 9.6 12.6 304
0.7 99.0 20.2 18.0 100 122 234
0.8 99.0 232 18.4 106 140 12.6
0.9 98.8 15.8 222 122 144 0.2
1.0 66.0 18.0 8.6 54 6.6 0
1.1 99.0 16.4 214 128 146 0.6
1.2 99.4 23.0 18.4 104 138 92
1.3 99.4 21.6 18.4 92 132 20.4
1.4 99.6 18.4 16.6 98 12.0 28.8
1.5 99.6 15.4 16.8 88 12.0 322

nominal significance level: 5%
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