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Abstract

We analyze the effect of stochastic survival of children on fertility decision in a dynastic

utility model where saving, so to speak, can only be made through having children, the
number of which is an endogenous decision to the household. In our stochastic framework
where the rate of population change undergoes a process of Brownian motion, the probability
distribution of the steady state is well determined, and saving via the number of offsprings
incorporates a precautionary component. Any health care assistance proposed to reduce the
variance of the Brownian process, for example, to reduce the risk of premature infantile
mortality, would have a negative effect on the fertility rate and a positive effect on the per
capita consumption in the long run.
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1. Introduction

It is well know that over-population is a significant problem for the development of
less developed countries (LDC). For this reason, international aid programs aiming
to reduce infantile mortality could have adverse effects if this reduction leads to
further population growth. Building on recent work in endogenous fertility (see
Tamura (2000)), this paper presents a model of fertility decisions in a stochastic
environment. Our conclusion is that a reduction of infantile mortality would be
beneficial, as it would actually lead to lower population growth. In fact, in this
model, children perform the role of precautionary savings. Reducing mortality
would reduce the need for such savings, leading to lower population growth

This paper is organized as follows: the next section describes the model; the
third section presents a solution to the model when the rate of time preference is
zero, 1t also gives the main result of this paper which implies that a decrease in
the variance of the population growth process will decrease fertility and enhance
the per capita consumption at the steady state equilibrium; and the last section
offers some concluding remarks.

2. The Model

The model considered here is the continuous time version of the Barro-Becker!
dynastic utility framework suggested by Barro and Sala-i-Martin (1995). In this
model, the dynasty head’s utility function is
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where Ny is the adult population at time ¢, ¢; is the consumption at time ¢, € is
the degree of altruism which has a constant elasticity with respect to the number
of offspring and 1/ is the elasticity of inter-temporal substitution. Finally, p is
the rate of time preference.

We suppose a simple production process which requires essentially the use of
labour, its supply depends on agent’s fertility decisions. The aggregate production
in the economy can be written as F' (Z, N;) where L represents a factor available
in fixed quantity, say land, and N, the adult population being used as labour. At
each period, production is allocated between consumption and the cost of having

See Becker and Barro (1988) and Barro and Becker (1989).



n¢ children, which includes parental time, education, food, etc. In order to simplify
algebraic manipulations, we assume that

F(L,N) =T "N = AN]. (2.2)

If we consider the marginal cost of having one child, b, as constant, we have the
following resources constraint at time t:

ANQ/ = Ntct —I— bNtnt. (23>

In a deterministic framework, since N ¢ = (n¢—1) Ny, equation (2.3) can be written
in terms of the following diffusion process®:

1 1
dN, = lgANg — ENtCt — N, | dt, Ny given. (2.4)

Life and death, however, are not matters of certainty. A child in our model is
faced with some probability of premature death, assumed to be 1 — p, where,
for simplicity, 0 < p < 1 is a constant and represents the probability of sur-
vival. Let E denotes the expectation operator, then E [dN;] = (pn, — 1) Nedt =

%ANQ — %Ntct — Nt} dt where § = b/p corresponds to the expected cost of a

surviving child. Because all adults die during the period, 1 — p will be identified
as infantile mortality. Assume by now that population growth undergoes a sto-
chastic process with a mean of E [d/N¢] and a variance which is proportional to the
number of living people Var [dN;] = £N,dt. This functional form of the variance
implies that the survival processes of children are all mutually independent. This
assumption rules out the possibility of epidemiological factors. The corresponding
process can be conveniently described by the familiar Ito’s stochastic differential
equation:

1 1
dN; = EANV N ENtCt — Nyl dt + <£Nt)1/2 dz, (2.5)

where dZ ~ N(0,dt) is a Brownian motion.
The problem for an individual living at time ¢ is to choose his consumption, ¢,
and his number of offspring, n;, under the budget constraint (2.5). Since his utility

2We assume that, at time ¢, the agent chooses to have n; children and that the mortality rate
is equal to 1 so that each agent lives just two periods. For the first period they are children and
during the second, they are adults offering one unit of labour. In this context, the population
growth rate becomes n; — 1.



depends not only on his own consumption but also on the well being of all of his de-
scendants, this recurrent relationship allows us to subsume utilities of immediate
descendants as well as all ensuing descendants in a single patriarch’s utility func-
tion (2.1). Note that this function satisfies the Strotz-consistency requirement,
therefore all individual decisions could be studied by examining the patriarch’s
decisions regarding the number of offspring and the consumption stream over the
whole time horizon. This problem therefore consists of

max / e PN} U (e,)dt (2.6)
0
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dN, = lBAN7 - BNtct - Ntl dt + (6N, dZ,

which is a stochastic planning problem.

3. Endogenous Population under Stochastic Growth

In this section, we will analyze the solution of our problem (2.6). For this purpose,
we shall use the analytical apparatus provided by Bourguignon (1974) and Merton
(1975, 1990). We first derive the probability density function of the population at
the stochastic steady state, then use it to find the optimal stochastic consumption
function.

For the stochastic process (2.5), let the transition probability be

G (N,t) = Pr[N, < N | Ny]. (3.1)

where N is random. We make the assumption that G (N, t, Np) has a conditional
probability density g (IV,t, Np) which is well defined on the interval [0, c0).

Following closely Merton (1990, p 601-604), the variation of the probability
density during dt is described by the following Kolmogorov-Fokker-Planck forward
equation:
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It is theoretically possible to obtain a full description of the process over the time
horizon by integrating equation (3.2) subject to the following initial conditions:

1, N=N,

On the other hand, if the stochastic steady state exists, g (IV,t, Ng) becomes time
independent. Let us denote the probability density function at the stochastic
steady state by g (V). We can then find the steady-state density, g (), by solving:

The solution of this differential equation is

J(N) = %exp{z /N Ay”—%zfyw—ﬂydy} (3.5)

N N Aoy _
—I—ﬂ exp {2/ AT = sc(s) ﬂsds} dy.
y
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Mandl (1968)% states a theorem on the existence of the stochastic steady state.
This theorem assumes that the boundaries of the distribution are inaccessible.
This means that lim, ,o Pr[N, < z] = 0 and lim, ., Pr [N, > z] = 0. Intuitively,
if lim, o, Pr[IV; > z] # 0, there will be no stochastic steady state because N = oo
becomes an absorbing bound. On the other hand, if lim, o Pr [V; < x] # 0, there
will exist a ¢ such as N; = 0, vVt > tA, a degenerate case not considered in this
paper*. These bounds are inaccessible if and only if:

Y B¢s
f;;o giN fm exp {2 ny Q—LMW*;ZSS 7ﬁsds} dydr = o | (3.6)

fooo giN exp {2 fm —Aykgzg‘/)*ﬁydy} dr < oo .

fON giN ["expdx {2 fN —ASLSC(S)*BSds} dydr = oo ,

These three conditions stipulated as (3.6) imply that ms = 0 and my # 0. We
now obtain:

3Quoted by Bourguignon (1974): Mandl, P. (1968), One Dimensional Markov Processes, Die
Grundlehren der Mathematischen Wissenschaften, Band 151, Prague

Tt is possible to have N = 0 as an accessible bound and under some conditions for which a
stochastic steady state still exists. Bourguignon (1974) gives a discussion on those conditions.
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Lemma 3.1. Under (3.6), the population at the stochastic steady state has the
following probability density function

Q(N)zgﬁNeXp {2/N Ayv_ygéév)_ﬂydy}, (3.7)

where m Is such that [ g (N)dN =1.

Given the probability density function of the population at the stochastic
steady state, we can find an asymptotic approximation of the consumption func-
tion. For a problem in which the utility function is time independent, Merton
(1975) has shown that solving the stochastic problem over the infinite time hori-

1-0o

zon 1s equivalent to maximizing F [N 17“”1?} . By solving this problem, we
obtain ¢ (V) which is the optimal consumption rule at the stochastic steady state
for a time independent utility function.

If we assume that utility is time independent, we can provide an analytical
solution to the problem. In this framework, Merton’s result teaches us that the
consumption rule at the stochastic steady state can be obtained by solving the
following problem:

o0 1-o
c
max NP g (N)dN 3.8
s VT 6

subject to

/Ooog(N)szl.

Defining v (N) = fN M+Mdy, we have g (N) = in exXp {év (N)} More-

over, note that v/ (N) = ANT ! —¢(N)—pB and v" (N) = (y — 1) AN"2. We can

then rewrite the problem as:

AN (N) = 8] m 2
max/o Nt T—0 g—NeXP{%UU\[)}dN (3.9)
“'m

1= [ G {0 }an].

5See also Merton (1990, p 592-598) on a lucid account of the stochastic Ramsey problem.




Fuler’s conditions to this problem are:

0 = —% [N“‘ [ANT ' — o/ (N) =] " % exp {%v (N)H (3.10)
o ) [N L A] ’
0= /000 Nlelcl_—;g (N)dN — A/OOOg (N)dN, (3.11)

0=1- gﬁNeXp{;ﬂ (N )}dN. (3.12)

0
We now establish the following:

Proposition 3.2. The stochastic process of population growth brings about a
precautionary component of the saving rate in terms of offsprings beyond its
certainty-equivalent level.

Proof. From (3.11) and (3.12) we can deduce A = F [leeﬂg;ﬁ} Computing
the derivative in equation (3.10) and substituting for v/ (N), v (N) and A, we
obtain an equation that describes ¢ (/N) implicitly:
0 = ¢(N) N |—= 4 2 [ANT1 - AN—ﬂ} 3.13
=1 (V) - ) (3.13
N1766<N)170
l—-0 '
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Instead of solving (3.13) for ¢ (IV), we get some useful information by closely exam-

NEB 1—o0

ining this equation at the certainty equivalent population Let us define the cer-

_E[Nl ecl "}‘

—a

C —o

o
Irom (3.13), we find the certainty equivalent consumption equatlon

&
ON’

tainty equivalent population level as N which satisfies N1—¢

a(ﬁ) — AN -3 - (3.14)

where, clearly, the consumption is reduced by the last term of the right hand
side. Thus the certainty equivalent rate of saving should be increased by the
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same amount, which corresponds to the precautionary motive in a stochastic
environment. l B B
We note that lim, . c (N) = ANV — (3. This means that when the variance

of the stochastic process vanishes and the probability of survival equals 1, we have
exactly the same consumption rule obtained for the deterministic steady state®.
Irom equation (3.14), one can easily see that, beside the increase of the children
survival probability, any decrease in the variance of the stochastic process & will
increase the per capita consumption at the stochastic steady state. Whenever an
increase in health care is aimed at reducing the variance of the stochastic process,
for example the international aid carried out specifically to diminish the risk of
infantile mortality, it will induce a decrease in the endogenous fertility and an
increase in the per capita consumption. Thus, the fear that international aids in
health care provided to the LDC could exacerbate the population pressure which,
often thought to impede the development process, is not always justified.

4. Concluding Remarks

When children constitute the sole asset in the kind of economy considered in this
paper (where fertility decision is endogenous), saving in term of offspring will be
lowered if precautionary motives would be reduced. With a Brownian process of
population growth, this could be done through any effort that decreases the vari-
ance of this process. International aids specifically aimed at reducing the variance
of infantile mortality rate in the LDC may be a good example for such cases,
entirely justified on the ground they promote a lower population growth and a
higher consumption level in the long run equilibrium state. In that perspective,
they are compatible with the objective of poverty reduction in the Third World.
Yet, as such, this latter objective requires much more vision and policy interven-
tions with regard to the process of development and industrialisation which brings
an economy from stage to stage as suggested in the recent work by Galor and Weil
(2000). In the transition to modern world, the LDC should consider many issues,
in particular the choices associated to Technology Transfers and the switch to
Human and Knowledge Capital accumulation.

5From (2.4), we can easily see that if %‘ = 0, we have co, = ANJ ' —b. Recall also that
8 = b/p which implies that if p = 1, we have 5 =1b.
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