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Abstract

We propose a detailed Monte Carlo study of model selection criteria when the exact
maximum likelihood (EML) method is used to estimate ARFIMA processes. More
specifically, our object is to assess the performance of two automatic selection criteria in the
presence of long—term memory: Akaike and Schwarz information criteria. Two special
processes are considered: a pure fractional noise model (ARFIMA(0,d,0)) and an
ARFIMA(1,d,0) process. For each criterion, we compute bias and root mean squared error
for various d and AR(1) parameter values. Obtained results suggest that the Schwarz
information criterion frequently selects the right model. Moreover, this criterion outperforms
the other one in terms of bias and RMSE, for both pure fractional noise and ARFIMA
processes.
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1 Introduction

A vast literature has been published on long-term memory processes, both from theoretical and
empirical viewpoints'. Such processes can be characterized by an autocorrelation function which
decreases at an hyperbolic rate. In other words, in the frequency domain, the spectral density ex-
hibits a pole at zero frequency. Autoregressive fractionally integrated moving average (ARFIMA)
processes were introduced by Granger and Joyeux (1980) and Hosking (1981) to account for these
two characteristics. Roughly speaking, these processes are characterized by a fractional differ-
encing parameter d which accounts for the long-term dynamics, while traditional AR and MA
components capture the short-term dynamics of the time series.

The growing empirical literature on ARFIMA processes highlights the importance of efficient
estimation procedures for these processes. Several estimation techniques have been proposed.
More specifically, one can distinguish one-step and two-step estimation methods (see e.g. Sowell
(1992) for details). Concerning two-step procedures?, one estimates, in the first step, the frac-
tional differencing parameter. AR and MA parameters are then estimated in the second step.
The drawback with these methods is that they use information only at low frequencies. In other
words, they do not take account of the short-term properties of the series when estimating the
fractional differencing parameter. This is an important issue since the estimate of the long-term
parameter could be contaminated by the presence of short-term components. One-step procedures
in which all parameters of the ARFIM A(p,d, q) representation are estimated simultaneously have
been suggested to avoid this problem. In these procedures, information at high frequencies is also
used. Among these methods, one can distinguish exact maximum likelihood (Dahlhaus (1989),
An et al. (1992) and Sowell (1992)) and approximate maximum likelihood (Li and McLeod (1986)
and Fox and Taqqu (1986))3. We propose here to focus on the exact maximum likelihood method
(EML) developed by Sowell (1992). This topic is relevant since, according to Dahlhaus (1988) and
Sowell (1992), EML is the most efficient estimation procedure for ARFIMA processes (see also
Cheung and Diebold (1994)). It permits us to tackle the short memory contamination problem
and the small-sample bias associated notably with the popular Geweke and Porter-Hudak two-
step method. However, despite these advantages, this technique has received little attention in the
literature, compared to the Geweke and Porter-Hudak procedure, because the EML estimation of
a long-range dependent process is computationally intensive for high dimensional systems, due to
the time required to compute the elements of the covariance matrix of the process and its inverse
(see, for example, Bollerslev and Jubinski (1999))*. This procedure has thus been criticized as
too computationally demanding, while the afore-mentioned methods have been criticized as inac-
curate for finite samples (see e.g. Sowell (1992)). It constitutes however the preferable estimation
procedure, especially in small and medium sample sizes.

We present here a Monte Carlo study based on two special processes: ARFIM A(0,d,0) and
ARFIMA(1,d,0) processes. ARFIMA(0,d,0) corresponds to a pure fractional noise, i.e. a
process which exhibits long-range dependence only (if d # 0). ARFIMA(1,d,0) is a process with
both short-term and long-term components®. More specifically, we study the ability of the EML
method to detect the right process according to two criteria: Akaike information and Schwarz
information criteria®. For each criterion, we also compute bias and root mean squared error
(RMSE) in association with various d and AR(1) parameter values. To our knowledge, no result is
available regarding the success of different model selection criteria when EML is used to estimate

IFor a survey, the reader is referred to Baillie (1996), Lardic and Mignon (1999) and Robinson (2003) among
others.

2The most popular is the technique developed by Geweke and Porter-Hudak (1983). Other methods have also
been proposed by Janacek (1982) and Shea (1991). See also Kiinsch (1987) and Robinson (1995) who introduced
the Gaussian semiparametric method.

3Note that some refined semiparametric methods have also been suggested (see Andrews and Guggenberger
(2003) and Andrews and Sun (2004)).

4For a recent discussion on this subject, see Doornik and Ooms (2003).

5Tt is well known that the combination of a large AR component with a long memory component is hard to
estimate (see, for example, Agiakloglou et al. (1993)).

6See Beran, Bhansali and Ocker (1998) for a discussion of these criteria for ARFIM A(p, d,0) models.



ARFIMA processes’.

The paper will proceed as follows. In section 2, we recall some definitions of ARFIMA processes
and some details concerning the EML method. Section 3 describes results from Monte Carlo
simulations, for both ARFIMA(0,d,0) and ARFIMA(1,d,0) processes. Section 4 concludes.

2 Some definitions

A time series Xz, t =1,..., T, follows an ARFIMA(p,d, q) process if:

(L)(1-L0)"X, =0 (L) e (1)
where ® (L) =1—¢yL—...—¢,LP, ©(L) =1—61L — ... — 0,L9, &, ~ iid(0,0?), and:
d(1—d) d(1—d)(2—d) = ;
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T being the gamma function.
X, t = 1,...,T, is both stationary and invertible if the roots of ® (L) and © (L) are outside
the unit circle and —1/2 < d < 1/2.

The parameters of this ARFIM A(p, d, q) process can be jointly estimated by the EML method,
assuming e; ~ iidN(0,02) (see Sowell (1992) for details). Let X;,¢t = 1,...,T, be a fractionally
integrated stationary Gaussian time series. X = (X1,..., X7)’ follows a normal law with mean
zero and covariance matrix Y. Its density function is given by:

FO) = (2r) 725 e (3 X8 ) 0

Due to the stationarity property, the covariance matrix has a Toeplitz form: X = [VF j] with
i,7 =1,2,...,T. Estimation of ARFIMA processes by EML requires writing the spectral density
function of Xy, denoted as fx(A), in terms of the parameters of the model and then evaluating
the autocovariance function v, at lag s by:

2
1= ge [ Fxeay Q
0

The EML estimator of d has an asymptotic normal distribution (see Dahlhaus (1989)). The
pertinence of this method lies in its using all information concerning the short and long-term
behavior of the series since it estimates all parameters of the ARFIM A(p,d,q) representation
simultaneously.

7Only a few Monte Carlo studies have been implemented to assess the performance of automatic selection criteria
in the presence of long memory and these do not concern the EML method. Schmidt and Tschernig (1993) studied
the performance of selection criteria in the single case of pure fractionally integrated processes and for the Whittle-
type approximate maximum likelihood method. Crato and Ray (1996) extended this study by considering more
long-term memory processes and by studying three estimation procedures: Geweke and Porter-Hudak (1983)’s
spectral regression method, Haslett and Raftery (1989)’s approximate time domain maximum likelihood procedure
and Fox and Taqqu (1986)’s approximate frequency domain maximum likelihood technique.



Table 1: Number of ARFIMA(0,d,0) models selected by the AIC criterion
-05 —-04 —-03 —-02 —-01 O 0.1 0.2 03 04 05

(0,d,0) 200 89 216 246 104 245 329 310 294 276 183
(0,d,1) 66 8 49 39 38 30 25 25 23 19 29
(0,d,2) 34 42 33 271 21 2 19 22 19 17 21
(0.d3 17 20 16 15 16 16 16 14 14 13 8
(1,d,0) 104 154 98 99 164 8 51 49 50 55 99
(1,d,1) 53 52 40 45 56 54 54 57 60 57 89
(1,d,2) 6 5 7 6 6 4 4 3 6 10 20
(1,d,3) 10 11 9 m 118 9 13 9 12 11
(2,d,0) 39 59 56 59 70 62 55 58 76 79 99
(2,d,1) 19 21 19 20 19 22 21 23 28 23 22
(2,d,2) 228 244 220 203 213 193 174 154 140 128 79
(2,d.3) 36 32 32 34 36 33 26 31 21 18 24
(3,d,0) 18 20 28 22 36 32 31 33 37 35 38
(3,d,1) 10 12 16 16 14 11 17 22 24 25 23
(3,d.2) 96 98 99 89 119 109 101 122 137 170 185
)

64 55 62 69 7 72 68 64 62 63 70

Maximum in bold.

3 Monte Carlo simulations

Two types of processes are simulated: An ARFIMA(0,d,0) model, i.e. a model with only a
long-term component, and an ARFIMA(1,d,0) model, i.e. a model including both long-term
and short-term components. For each d value (—0.5 < d < 0.5), we generate 1000 series of 300
observations, a size that is common with business and economic data. We run the exact maximum
likelihood procedure on these series and estimate 16 ARFIM A(p,d, q) processes: from (0,d,0) to
(3,d,3) process. Then, we retain the model which maximizes Akaike (AIC) and Schwarz (SIC)
information criteria.

3.1 Pure fractionally integrated processes: ARFIM A(0,d,0)

We first simulate ARFIM A(0, d, 0) processes in order to assess the performance of selection criteria
in the absence of a short-term component.

3.1.1 General comments

Tables 1 and 2 give the number of ARFIMA(0,d,0) processes selected by AIC and SIC respec-
tively. The SIC criterion performs very well for positive d values since it very often retains the right
model (the percentage is greater than 90%, except when d = 0.5). For negative d values, except
when d = —0.4, SIC tends to select the right model, but the percentages are not very high. The
results in table 2 also indicate that the second model which is relatively frequently chosen by SIC is
ARFIMA(1,d,0). Similar comments can be made when using the results reported in table 1. The
most chosen model by AIC is ARFIM A(0,d,0) for positive d values. Note however that percent-
ages in selecting the right model are much lower than those issued from SIC criterion. For negative
d values, except when d = —0.2, AIC tends to select the ARFIMA(2,d,2) process. According
to both information criteria, the most difficult process to be identified is ARFIM A(0,—0.4,0),
which means that the anti-persistent fractional noise is harder to identify than the persistent one.
Globally, fractional noise models with positive d values are easier to identify than anti-persistent
ones.



Table 2: Number of ARFIMA(0,d,0) models selected by the SIC criterion
-05 —-04 —-03 —-02 —-01 O 0.1 0.2 03 04 05

(0,d,0) 493 275 565 640 523 901 943 943 934 917 833
(0,d,1) 198 257 155 72 8 53 19 15 15 17 18
(0.d,2) 6 12 3 5 5 3 3 3 3 3 2
0.d,3) 1 1 1

(1,d,0) 283 428 251 255 356 56 24 28 34 47 109
(1,d,1) 7 9 5 6 8 2 1 1 2 5 9
(1,d,2) 1
(1.d.3)

(2.d,0) 6 4 16 15 18 9 5 6 7 6 21
(2,d,1) 1 2 1 2 2 2 1 1 2 1 1
(2,d,2) 5 2 2 4 3 3 2 1 13
(2.d,3)

(3.d,0) 1 1 1 1 2 2 3 3 3
(3.d,1)

(3.d,2)

(3.d,3)

Maximum in bold.

3.1.2 Bias and RMSE

In order to complete these results, tables 3 and 4 give the bias and root mean squared error
(RMSE) calculated for each criterion. Three biases and RMSE are given:

e Case (1): bias and RMSE for the model selected by the considered criterion,

e Case (2): bias and RMSE conditional on the right model being selected by the considered
criterion,

e Case (3): bias and RMSE for the right model (even if this model had not been selected by
the considered criterion).

According to tables 3 and 4, and for positive d values, one can remark that bias and RMSE
are very close in cases (2) and (3) for the SIC criterion. This result is not surprising since this
criterion generally selects the right model for positive d values (see table 2).

According to table 3, and when the right model is selected (case (2)), SIC gives the lowest
bias for negative d values (except for d = —0.1) and so does AIC for positive d values. Let us
now consider the model selected by each criterion (ARFIMA(0,d,0) or not). In this case (case
(1)), SIC always leads to the lowest bias. Note that one reason is that SIC selects the right model
more often. From a general viewpoint, one can also note that, whatever the criterion, the bias is
generally negative; i.e. d tends to be underestimated.

Let us now comment on the results reported in table 4. In case (2), AIC leads to the lowest
RMSE, except for four values of d (—0.4, —0.3, 0, and 0.5), for which RMSE is minimized by SIC.
In case (1), the lowest RMSE is again always given by SIC.

Finally, the study of bias and RMSE according to d values leads to the two following comments.
First, concerning AIC, one can note that bias and RMSE increase along with the value of d in
case (1). The same comment can be made for case (2), but only when d is positive. For negative
d values, the bias is generally small and tends to decrease as d increases (notably until d = —0.3).
In case (2) for AIC, one remarks that RMSE is relatively stable for positive d values (except
for d = 0.5). Second, the bias associated with SIC criterion for case (1) tends to increase with
the value of d, when d is positive. The bias is relatively stable for negative d values (except for
d = —0.2). For the same case, RMSE is not very sensitive to d, but tends to increase when d tends



Table 3: ARFIMA(0,d,0). Bias
AIC SIC

d (1) 2) (1) (2) ()
—0.5 -6.57.1072 -2.80.1072 -2.45.10"2? -2.57.10~2 2.31.107"
-0.4 -9.93.1072 -1.54.1072 -2.92.1072? -1.28.1072 2.83.10°!
-0.3 -1.15.1071! 6.0810—3 -2.83.107%2  4.43.1073 1.27.1071
-0.2 -1.32.107!  -2.81.1072 -4.21.1072 -2.69.1072 5.24.1072
—0.1 -1.54.107" -2.36.1073 -2.53.10-2 3.81.1072  7.10.1072

0 -1.77.1071 1.10.1072 -2.16.102  7.12.1073  7.20.1073

01 -1.92107' -1.43.10%2 -3.50.107%2 -1.68.1072 -1.66.102

0.2 -2.39.107' -1.61.1072 -4.07.1072 -1.89.1072 -1.86.10"2

0.3 -295.107' -1.85.1072 -5.08.1072 -2.13.1072 -2.05.10"2

0.4 -3.55.107' -2.43.1072 -6.80.1072 -2.72.107%2 -2.58.102

0.5 -5.29.107'  -6.34.107%2  -1.59.10~' -5.90.10"2 -5.59.1072

(1): Bias given by the selected model. (2): Bias given by the selected right model. (3): Bias
corresponding to the right model. In italics: minimum bias according to (1). In bold: minimum bias
according to (2).

Table 4: ARFIMA(0,d,0). RMSE
AIC SIC
d (1) (2) (1) (2) 3)
—0.5 2.55.10°" 5.05.10"2 1.18.10~" 5.19.1072 3.55.10'
—04 2.82.107' 6.93.1072 1.35.107' 6.54.1072 3.45.10°'
—0.3 290.100" 4.61.1072 1.84.107' 4.49.10~2 2.00.10~!
—0.2 295.10°' 4.54.10°2 1.32.10' 5.19.1072 1.29.10°!
—0.1 3.19.100' 7.23.10°2 1.50.10~' 8.81.107%2 9.85.10°2
0 349.100' 3.54.10°2 1.25.10' 3.53.1072 3.46.10 2
0.1 3.67.100" 4.51.1072 1.23.10~' 4.78.107%2 4.76.1072
0.2 4.23107' 4.73.10~2 1.35.10~' 5.07.1072 5.04.1072
0.3 4.83.107' 4.66.10°2 1.56.107' 5.07.1072 5.04.1072
04 542100 4.75.1072 1.86.10~' 5.13.1072 5.07.1072
0.5 6.75.1007'  6.89.1072 3.04.10~' 6.57.1072 6.29.1072
(1): RMSE given by the selected model. (2): RMSE given by the selected right model. (3): RMSE
corresponding to the right model. In italics: minimum RMSE according to (1). In bold: minimum
RMSE according to (2).




Table 5: Number of ARFIMA(1,d,0) processes selected by the AIC criterion

d

¢ -05 —-04 -03 -02 01 0 01 02 03 04 05
—09 349 437 536 464 389 376 410 457 397 230 157
—0.7 393 386 399 453 421 421 394 279 322 288 267
—-05 401 378 368 376 374 375 385 421 343 282 345
-0.3 310 347 337 311 318 318 325 346 410 330 252
—-0.1 186 153 146 239 186 140 139 137 134 190 305
0.1 104 159 195 111 47 176 77 52 59 51 27
03 365 363 339 345 343 315 296 262 260 230 147
05 531 462 420 398 398 387 383 348 329 313 221
0.7 595 533 529 568 468 456 506 400 373 335 238
09 545 568 608 590 563 546 511 514 518 438 200

In bold: model most often selected.

Table 6: Number of ARFIMA(1,d,0) processes selected by the SIC criterion

d

¢ -05 —-04 -03 -02 —01 0 01 02 03 04 05
-09 670 781 858 794 700 702 760 902 828 598 413
—0.7 900 900 893 902 897 907 826 701 766 832 766
—0.5 850 817 815 826 839 838 849 848 721 640 794
—0.3 553 726 695 567 569 590 605 652 715 619 558
—-0.1 415 294 256 500 197 132 138 145 159 234 507
0.1 129 367 563 329 340 265 63 50 49 41 30
03 697 696 723 800 817 736 758 677 651 653 622
05 944 931 929 923 917 913 908 902 897 881 828
07 970 968 965 955 951 943 940 930 925 902 855
09 922 954 974 970 976 969 962 953 947 914 747

In bold: model most often selected.

to 0.5. Regarding now case (2), bias and RMSE increase with d, when d is positive. When d is
negative, the bias is very small and tends to decrease as d increases (notably until d = —0.3).

To sum up, our simulations indicate that the Sowell (1992)’s procedure performs well in esti-
mating ARFIMA(0,d,0) if the model is selected by information criteria, more especially by SIC
which often retains the right model. This conclusion relating to the success of the SIC criterion
confirms the results obtained by Schmidt and Tschernig (1993) and Crato and Ray (1996) with
other estimation procedures (see footnote 7).

3.2 Introduction of a short-term component: ARFIMA(1,d,0) processes

‘We now proceed to the study of the performance of the exact maximum likelihood method in the
presence of an AR(1) component. To do this, we simulate ARFIMA(1,d,0) processes of length
300. The values for the autoregressive parameter are spread between —0.9 and 0.9, with a step of
0.2.

3.2.1 General comments
Tables 5 and 6 report the number of times the right model has been selected by AIC and SIC

criteria respectively.

Results in tables 5 and 6 indicate that both information criteria perform well, since ARFIMA(1,d,0)
is the most often selected model, except for ¢ = 0.1 and —0.1. The SIC criterion often selects



Table 7: Processes most often selected by the AIC criterion

d
¢ -0.5 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 .
-09 (1,400 (1,4,0) (1,d,0) (1,d,0) (1,d,0) (1,4,0) (1,400 (1,400 (1,400 (1,4,1) (1,d,1
-0.7 (1,4,0)0 (1,400 (1,40 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0) (1,d,0
-05 (1,4,0) (1,400 (1,400 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0) (1,d,0
-0.3 (1,4,0) (1,400 (1,400 (1,40 (14,0 (1,400 (1,400 (1,40 (1,d,0) (1,d,0)0 (1,d,0
01 (2,d,2) (2,d4,2) (0,d,0) (1,4,0) (1,4,0) (0,d,0) (0,d,0) (0,d,0)0 (3,d,2) (1,d,0)0 (1,d,0
0.1 (0,d,0) (2,d,2) (2,d,2) (2,d,2) (2,d,2) (2,d,2) (0,d,0) (0,d,00 (0,d,0) (0,d,0) (0,d,0
03 (1,400 (1,400 (1,d0) (1,40 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0
05 (1,4,00 (1,400 (1,d0) (1,40 (1,40) (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0
0.7 (14,00 (1,400 (1,40 (1,40 (1,400 (1,400 (1,d,0)0 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0
0.9 (1,4,0) (1,4,0) (1,4,0) (1,d,0) (14,00 (1,400 (1,400 (1,400 (1,400 (1,d,0)0 (2,d,0
Table 8: Processes most often selected by the SIC criterion
d
¢ -0.5 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 .
-09 (1,400 (1,4,0) (1,d,0) (1,d,0) (1,d,0) (1,4,0) (1,400 (1,400 (1,4,00 (1,4,0)0 (1,d,1
-0.7 (1,4,0) (1,4,0) (1,400 (1,d,0) (14,0 (1,400 (1,400 (1,40 (1,d,0) (1,d,0)0 (1,d,0
-0.5  (1,4,0) (1,400 (1,d0) (1,d,0) (1,4,0) (1,400 (1,400 (1,40 (1,d,0) (1,d,0)0 (1,d,0
-03 (1,4,0)0 (1,400 (1,40 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0) (1,d,0
-0.1 (1,4,0) (0,d,0) (0,d,0) (1,d,0) (0,d,0) (0,d,0) (0,d,0) (0,d,00 (0,d,0)0 (0,d,0) (1,d,0
0.1 (0,d,0) (0,d,0) (1,d4,0) (0,d,0) (0,d,0) (0,d,0) (0,d,0) (0,d,0) (0,d,0) (0,d,0) (0,d,0
0.3 (1,4,0) (1,d4,0) (1,400 (1,d,0) (14,0 (1,400 (1,400 (1,40 (1,d,0) (1,d,0)0 (1,d,0
0.5 (1,4,0) (1,d4,0) (1,400 (1,d,0)0 (14,00 (1,400 (1,400 (14,00 (1,d,0) (1,d,0)0 (1,d,0
0.7 (14,00 (1,400 (1,d0) (1,40 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,4,0) (1,d,0) (1,d,0
09 (1,400 (1,400 (1,d0) (1,40 (1,400 (1,400 (1,d,00 (1,d,0)0 (1,d,0) (1,d,0) (1,d,0

the right model, especially for high ¢ values. Globally, according to tables 5 and 6, SIC performs
better than AIC. This conclusion contrasts with the results obtained by Crato and Ray (1996)
who found that AIC produces better results for ARFIMA(1,d,0) processes with Geweke and
Porter-Hudak and approximate maximum likelihood estimation procedures. However, as noted by
Crato and Ray (1996), even the AIC criterion had a very low success rate. This illustrates that
selection criteria may behave differently with different estimation procedures when dealing with
ARFIMA processes which also incorporate short-range dependence.

Moreover, compared to Crato and Ray (1996)’s results, our number of successful identifications
is very high. In their study, this number was extremely low. As they selected short memory
ARMA models, it indicates that short memory component and long-range dependence cannot be
distinguished in small and medium samples. Once again, this conclusion shows that success in
model selection criteria depends upon the estimation procedure.

Results in table 7 indicate that when ¢ = 0.1 and for positive d values, AIC is biased towards a
pure fractionally integrated process, i.e. a process without short-range dependence. For the same
¢ value but for negative d values, except for d = —0.5, AIC tends to select an ARFIMA(2,d,2)
process, i.e. it overparametrizes ARFIMA models. In other cases, AIC generally selects the
right model. Whatever the value of d (except for d = —0.3), the SIC criterion is biased towards
ARFIMA(0,d,0) for |¢| = 0.1 (see table 8). For the other values, SIC performs well and selects
the right model.



3.2.2 Bias and RMSE associated with the fractional differencing parameter

We can now proceed to a detailed study of bias and RMSE concerning the fractional differencing
parameter. In order to avoid an overabundance of tables, we only report some results for particular
values of ¢ and d (see appendix, tables 9 to 20)°. As previously, we consider three cases: Bias and
RMSE associated with the model selected by the considered criterion (case (1)), bias and RMSE
corresponding to the right model which has been selected (case (2)), and bias and RMSE associated
with the right model (even if this model had not been selected by the considered criterion, case
(3).

Concerning bias, various comments can be made (see tables 9 to 12). Generally, and as for pure
fractional noise models, the fractional differencing parameter is underestimated since the bias is

negative. One main exception concerns ¢ = —0.9. Indeed, if one considers case (2), AIC produces
a positive bias for negative d values, and so does SIC except for strong persistent processes (d = 0.5
and 0.4).

The analysis of results for case (1) shows that the minimal bias is reached by SIC except
for |¢| = 0.9 and strong anti-persistent processes. Indeed, in this last case, the minimal bias is
obtained with the AIC criterion. Concerning now case (2), results are less clear-cut, and depend
upon the signs of both ¢ and d. More specifically, results indicate that:

e For high positive ¢ values, AIC frequently leads to the lowest bias, except for strong persistent
and anti-persistent processes (i.e. for high |d| values). When ¢ decreases, minimal bias is
generally obtained with SIC. Finally, for low ¢ values (i.e. for ¢ = 0.1), the minimal bias is
globally reached with SIC for negative d values, and with AIC for positive d values.

e Reciprocally, for high negative ¢ values (¢ = —0.7), SIC often leads to the lowest bias. For
less negative ¢ values, minimal bias tends to be reached by AIC. Finally, when ¢» = —0.1, the
lowest bias is generally associated with SIC for negative d values, and with AIC for positive
d values.

Let us now proceed to the analysis of the relation between bias and d according to each criterion.
Two general comments can be made:

e For the AIC criterion, bias also increases as d increases, especially in case (1). If one considers
case (2), bias seems to be independent of d for high and low |¢| values. For intermediate ¢
values, bias slightly increases along with the value of d.

e For the SIC criterion, and whatever the case, bias does not depend on d for |¢| = 0.9. This
is also the case for low |@| values. For intermediate ¢ values, bias tends to increase with d.

To conclude, one can remark that, whatever the criterion, the bias is generally lower for positive
¢ values than for negative ones. In other words, the underestimation of d is more important in
the presence of a negative short-term parameter.

Consider now tables 13 to 16 relating to RMSE results. Results relating to case (1) show that
SIC generally leads to the lowest RMSE, except in the case of strong anti-persistent processes
when ¢ = —0.9 and where minimal RMSE is reached by AIC. If we now consider the case when
the right model has been selected by information criteria (case (2)), results are more disparate
and depend upon the signs and values of d and ¢. More specifically, for positive ¢ values, one has
the following pattern:

e For high values of ¢, the lowest RMSE is given by AIC for positive d values, and by SIC for
negative ones.

e For decreasing ¢ values, AIC generally leads to the lowest RMSE.
e When ¢ reaches 0.3, SIC outperforms AIC.

8The other tables are available upon request to authors.



e Finally, for ¢ = 0.1, AIC leads to better results for positive d values, and SIC outperforms
AIC for negative d values.

For negative ¢ values, the following results hold:

e For low ¢ in absolute value, RMSE is generally minimized by AIC, except for strong persis-
tent processes (d = 0.5) and for some negative d values.

e When ¢ increases (in absolute value), SIC leads to the lowest RMSE.

e Finally, for ¢ = —0.9, AIC is associated with the lowest RMSE, except for high positive d
values.

Some comments on the relationship between RMSE and d must be added. In case (1), RMSE
tends to increase with d for both information criteria. When the right model is selected (case (2)),
RMSE is not very sensitive to d, except in the following two cases: for low and positive ¢ values,
RMSE tends to increase as d increases, and, reciprocally, for high and negative ¢ values, RMSE
tends to decrease as d increases.

Finally, if one studies RMSE values for various ¢ values, it appears that the lowest RMSE is
always found when combined with positive ¢ values. This result confirms the conclusion drawn
from bias analysis.

3.2.3 Bias and RMSE associated with the short-term component

The analysis of bias and RMSE associated with the autoregressive coefficient leads to the following
results (see tables 17 to 20). First, bias is generally very low. Moreover, it is frequently negative,
except for ¢ = —0.9. Second, in case (1), SIC gives the lowest bias. If we consider the case when
the right model is selected (case (2)), results depend upon the signs of d and ¢. More specifically,
the following pattern can be observed:

e When ¢ < 0 and d < 0, SIC generally outperforms AIC.
e When ¢ > 0, AIC frequently leads to the lowest bias.
e For low positive d values, AIC tends to outperform SIC in terms of bias.

e Finally, for high d values, SIC tends to outperform AIC.

The third and last conclusion concerns RMSE of ¢. RMSE is always minimized by the SIC
criterion if one only considers case (1). In case (2), SIC outperforms AIC for high negative d values.
For low positive d values, AIC tends to minimize RMSE more frequently than SIC. Finally, for
high positive d values, AIC leads to the lowest RMSE when ¢ > 0, while SIC minimizes RMSE
for ¢ < 0.

4 Conclusion

‘We have resorted to a simulation study to assess the performance of two automatic selection criteria
when long-term memory processes are estimated by the exact maximum likelihood method. Three
main conclusions emerge from this Monte Carlo analysis. First, whatever the criterion, the bias is
generally negative, which means that d tends to be underestimated. This is a well known result
on EML. Moreover, results relating to ARFIMA(1,d,0) processes show that bias and RMSE
are generally lower with a positive first-order autoregressive coefficient than with a negative one.
However, contrary to Hauser (1999), we do not find strong evidence that bias tends to increase with
the introduction of an AR(1) component. Second, our results indicate that SIC outperforms AIC,
in the cases of both pure fractional noise and ARFIMA processes. This criterion generally had a
high success rate to select the right model. Third, if we compare our study to other works, our



results show that success in the use of selection criteria is dependent on the estimation procedure
when mixed ARFIMA processes are estimated. Crato and Ray (1996) showed that AIC provides
the best results when Haslett and Raftery (1989) and Fox and Taqqu (1986)’s methods are used.
They showed that the Geweke and Porter-Hudak procedure presents significant estimation biases
and their simulation results confirm a poor model identification. Our results indicate that SIC
always leads to better results for both fractional noise and ARFIMA processes when the EML
method is used.

Appendix: some results of Monte Carlo simulations

Tables 9 to 12 and tables 13 to 16 respectively give bias and RMSE for the fractional differencing
parameter d. Tables 17 and 18 concern bias of the first-order autoregressive coefficient. Finally,
tables 19 and 20 report RMSE of ¢.

For all tables, the legend reads as follows. (1) means bias (or RMSE) given by the selected
model. (2) means bias (or RMSE) given by the selected right model. (3) means bias (or RMSE)
for the right model. In italics: minimum bias (or RMSE) in (1). In bold: minimum bias (or
RMSE) in (2).

Table 9: ARFIMA(1,d,0) — Estimation of d with ¢ = —0.7 — Bias
AIC SIC

d 1) (2) 1) (2) 3)
-0.5 -1.01.1077 -287.107% -1.1.107%? -2.18.10~2 -2.42.107°
-04 -1.36.100' -3.39.107% -2.65.102 -2.8.10°2 -1.07.10 2
-0.3 -1.72.1071  -4.22.10°%  -4.74.1072% -3.65.1072 -2.06.10 2
-0.2 -249.107'  -5.8.102  -6.91.1072% -5.55.10"2 -4.18.1072
-0.1 -2.73.107' -7.47.1072 -9.97.107% -6.85.10"2 -5.9.102
0.0 -299.10°' -9.78.1072 -1.13.10' -8.88.1072 -8.4.1072
0.1 -3.35.100' -9.22.1072 -1.29.100' -8.29.10°2 -1.07.10°!
0.2 -4.01.107' -1.06.107' -1.5.100' -9.82.102 -1.9.10°!
0.3 -434.10°' -1.17.10°' -1.7.100' -1.02.10°! -1.75.10°!
04 -461.107" -1.13.107' -1.76.107' -1.09.10"!' -1.25.107"
0.5 -451.107' -1.57.10°' -2.1.100' -1.44.10°! -1.72.10°!
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Table 10: ARFIMA(1,d,0) — Estimation of d with ¢ = —0.1 — Bias

AIC SIC
d 1) (2) 1) (2) (3)
0.5 -7.16.1072 -1.1210°Y -1.63.1072 -6.65.10"2 -4.71.107Z
-0.4 -1.03.107' -1.41.10"' -8.86.1073 -1.07.107! -5.18.10"2
-0.3 -1.23.10°'  -1.52.10°'  -1.04.107% -1.32.10°! -5.99.10 2
-0.2 -1.41.107'  -1.18.10°'  -4.03%.107% -1.06.10"! -6.6.102
-0.1 -1.57.100' -1.53.100' 3.82.1073 -2.55.10~' -7.14.102
0.0 -1.82.107!' -2.39.10"' -1.53.107%2 -3.76.10! -8.20.102
0.1 -213.107!' -2.42.107' -2.22.1072 -3.80.100! -8.62.102
0.2 -255.107! -2.59.10°' -3.08.107% -3.95.10°' -9.5.10 2
0.3 -3.09.100' -3.08.10°' -/.88.107% -4.43.10"' -1.12.10°!
0.4 -387.107! -3.56.10! -1.06.100' -4.56.10"! -1.56.10!
0.5 -6.42.107' -6.62.10~' -3.83.10°' -5.74.10"' -4.51.10!

Table 11: ARFIMA(1,d,0) — Estimation of d with ¢ = 0.1 — Bias

AIC SIC
d (1) (2) (1) (2) 3)
-0.5 -6.54.1072 -1.83.10~2 -4.59.107> 235102 -1.85.1072
-0.4  -9.96.1072  -2.09.1072  -4.66.1072% -7.29.107% -2.71.1072
-0.3 -1.15.107'  -1.85.1072 -3.89.107% -1.73.10°%2 -3.09.102
-0.2 -1.46.107'  -231.10°2  -4.71.107% -2.31.107%2 -3.4.10°2
-0.1 -1.54.107!' -1.41.1072 -6.86.107% -1.62.1072 -3.84.102
0.0 -1.73.107' -3.16.1072 -4.59.1072 -4.94.10"%2 -3.93.1072
0.1 -2.05.10"' -2.62.1072 -6.63.107> -8.72.1073 -4.19.1072
0.2 -242107' -1.52.1072 -7.92.10°% 1.64.10°2 -4.51.10"2
0.3 -2.79.107' -1.75.1072 -857.10°% 2.38.1072  -4.96.10"2
0.4 -3.49.107' -6.26.1072 -1.01.107' -1.02.100' -6.42.10°2
0.5 -4.81.10°" -3.56.10"' -1.34.107' -4.57.107' -9.88.1072

Table 12: ARFIMA(1,d,0) — Estimation of d with ¢ = 0.7 — Bias

AIC SIC
d 1) (2) 1) (2) (3)

-0.5 -14.10"%2 -6.97.10°% 1.7.107° 1.58.10—%  1.35.10°
0.4 -4.79.1002 -9.13.10°% -1.01.10°% -8.76.10°3 -8.88.10°3
-0.3 -8.8.1072 -1.52.1072 -1.99.1072 -1.38.1072 -1.38.102
-0.2 -9.94.1072 -1.72.1072 -2.65.1002 -1.67.1072 -1.69.102
-0.1 -1.34.107' -1.98.1072 -3.19.1072 -2.01.102 -2.10~2

0.0 -1.4810"' -2.05.1072 -3.98.1072 -2.1.1072  -2.02.10~2
0.1 -1.62.107" -1.87.1072 -4.21.107% -2.12.1072 -2.1.10°2
0.2 -223.107! -2.24.1072 -58.107%2 -2.46.1072 -2.41.1072
0.3 -2.67.1001 -2.58.1072 -6.57.1072 -2.74.1072 -2.72.1072
0.4 -341.100' -3.14.1072 -9.13.1072 -3.32.107%2 -3.25.1072
0.5 -4.35.100"  -6.02.1072 -1.41.100' -5.5.10"%2 -5.41.1072
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Table 13: ARFIMA(1,d,0) — Estimation of d with ¢ = —0.7 — RMSE

AIC SIC
d &) (2) (1) (2) 3)
-0.5 3221077 1.39.10°T 2.04.1007 1.36.10°" 1.5.107T
-04 347.107' 1.45.107' 2.08.107' 1.36.10"' 1.46.107"
-0.3 3.71.107'  1.46.107'  2.23.107' 1.35.10°' 1.43.10°!
-0.2  4.62.1071 1.48.10°' 2.29.100' 1.4.10°' 1.44.10°!
-0.1 472107 1.5.107'  2.48.107' 1.42.107' 1.43.107!
0.0 4.89.10°' 1.61.10~' 2.31.10°' 1.54.10~' 1.55.10~!
0.1 5.24.10°' 147.10°' 2.78.10°' 1.41.10~' 1.85.10~!
0.2 5.74107' 153.10°! 2.8.10°' 1.46.10°' 287.10°!
0.3 5.94.107' 1.62.10°' 2.75.100' 1.49.107' 2.76.10°!
04 6.14.107' 146.107' 2.73.100' 1.4.10°! 1.89.10°!
0.5 5.79.10°' 1.72.107' 2.89.107' 1.59.10~' 2.18.10!

Table 14: ARFIMA(1,d,0) — Estimation of d with ¢ = —0.1 — RMSE

AIC SIC
d (1) (2) (1) (2) (3)
-0.5 2.63.1007 256.10°'  1.52.1007 2.05.10"' 1.68.1077
0.4 29107 25210°Y  1.59.100' 2.4.107'  1.49.10°1
-0.3 3.01.100' 2.46.10°' 1.48.100' 2531071 1.51.10°!
-0.2 3.05.10°' 2.18.10°!' 1.82.100' 2.03.10°! 1.6.10°!
-0.1 3.33.100' 2.45.10°' 1.81.100' 3.34.107!' 1.68.1077
0.0 3.7.10°! 3.32.107! 1.82.107' 4.49.107' 1.87.1071!
0.1 4.06.107' 3.4.10°! 71.91.100' 4.66.107' 1.95.1071!
0.2 4.53.10°! 3.58.10°' 1.98107' 47.107' 2.01.10°1
0.3 4941071 4.21.10°' 2261001 5.2810°! 2.32.10°1
0.4 5.64.1071 4.86.10°! 2.85.107' 5.64.1071 2.93.10°1
0.5 7.48.10""  7.4.107'  543.107' 6.84.107' 5.84.107!

Table 15: ARFIMA(1,d,0) — Estimation of d with ¢ = 0.1 — RMSE

AIC SIC
d (1) (2) 1) (2) (3)
0.5 251071 2241077 1.02.1007 1.23.10°T 9.99.1072
-0.4 2651071 1.65.100Y'  1.19.100' 1.08.1071 9.82.1072
-0.3 2.8.10°! 8.19.102 1.27.100' 895102 8.95.10 2
-0.2 3.06.107' 9.84.1072 1.15.100! 8.84.1072 8.7.10°2
-0.1 3.13.107'  1.1.107'  1.44.107" 1.05.107' 9.45.1072
0.0 3.44.107' 1.13.107! 1.36.100' 1.36.107' 9.95.10~2
0.1 3.75.10°' 1.5.10°! 7.2.107' 2.14.107' 1.01.1071
0.2 4.16.107! 1.62.10°! 7.3%.100' 2.11.107' 1.01.10°1
0.3 4.56.10°' 1.51.10°' 1.42.100' 1.63.100!  9.76.102
0.4 5.26.100' 2.07.10°!' 1.69.100" 3.42.100' 1.16.10°!
0.5 6.32.100!' 5.05.10°' 2.18.107' 6.36.10~!  1.5.10°!

12



Table 16: ARFIMA(1,d,0) — Estimation of d with ¢ = 0.7 — RMSE

AIC SIC
d © B M B ®)
-0.5 222101 5.14.10°2 7.09.107% 5.17.107% 5.18.10°2
-0.4 2.16.107' 4.93.1072 7.05.107% 5.22.1072 5.22.10°2
-0.3 2.57.107'  5.35.107%2  9.09.10~% 5.33.1072 5.35.1072
-0.2 2.75.107' 5.29.1072 1.04.107' 5.38.1072  5.4.1072
-0.1 3.15.107' 5.69.10°2 1.13.107' 5.71.1072 5.69.1072
0.0 3.26.100! 5.67.10°2 1.36.100' 5741072 5.71.10°2
0.1 3.49.10°' 5.37.10°2 1.4.100' 5.59.10°2  5.6.10 2
0.2 4.13.10! 5.52.102 1.76.1001 5.87.10°2 5.86.1072
0.3 4.52.100' 5.59.1072 1.87.100' 5.89.10~2 5.91.1072
0.4 527.107" 5.56.1072 2.28.10~' 5.88.1072 5.86.1072
0.5 5.85.10°' 6.79.1072 2.84.10°' 6.46.10°2 6.4.10 2

Table 17: ARFIMA(1,d,0) — Estimation of ¢ with d = —0.4 — Bias

AIC SIC
¢ €9) (2) €9) (2) 3)
-09 2.32.10°% 658102 19810 T 6.48.10 7 2.05.10°T
-0.7 -2.71.1072  -4.84.107%  1.47.107%? -3.17.10°% 1.36.10 2
-0.5 3471072 -1.12.107Y  -571.107% -9.89.1072 -7.19.1072
-0.3 -1.82.107% -1.38.10~' -1.93.107%2 -1.35.10"! -8.81.1072
0.1 -1.92.107%2  -1.4.10"'  4.89.1072 -8.52.1072 -4.67.1072
0.1 -1.01.107' -1.95.10"2 -6.63.1072 -1.56.10"2 -2.12.1072
0.3 -1.19.107' 7.2.107%  -751072 1.53.100%2 -1.12.10°2
0.5 -9.5.102 -7.98.10~% -3.69.107%2 -1.1.1072  -1.17.1072
0.7 -6.941072 -1.35.1072 -1.12.107%2 -1.32.1072 -1.33.10°2
0.9 -4.41.1072 -5.01.1072 -4.54.1072 -4.79.1072 -4.69.102

Table 18: ARFIMA(1,d,0) — Estimation of ¢ with d = 0.4 — Bias

AIC SIC
¢ 1) (2) 1) (2) (3)
-09 -23210°7 7.25.107% -2.41.107% 1951072 -1.92.1072
-0.7 -2.83.10°' -6.77.1072 -1.08.107' -6.28.10"2 -7.14.102
-0.5 -341.107'  -2.04.10°'  -1.64.100' -1.96.107' -2.77.10°!
-0.3 -3.9.107! -4.19.107' -2.85.100' -4.14.107! -4.52.10°!
-0.1 -254.10°' -3.69.10°! -/.33.10°% -4.83.10°' -1.47.10°!
0.1 -3.0810"' -2.9.1072 -1.09.107' -3.41.1072 -5.58.102
0.3 -3.22.100'  -251072  -1.831.107' 3.99.107° -3.14.1072
0.5 -259.1071 -2.04.1072 -8.59.1072 -2.38.1072 -2.45.102
0.7 -257.1071 -1.75.1072 -7.52.1072 -1.72.1072 -1.69.102
0.9 -348.10°' -1.31.102 -7.45.100% -1.56.10"2 -1.64.10"2
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Table 19: ARFIMA(1,d,0) — Estimation of ¢ with d = —0.4 — RMSE

AIC SIC
¢ (1) (2) (1) (2) 3)
-0.9 6.43.1077  1.45.10°"  3.97.1007 1.4.107" 3.64.107!
-0.7 6.72.107'  1.26.10°'  2.38.107' 1.14.10~' 1.34.107!
-0.5 7.11.107'  1.94.10°'  2.74.100" 1.78.10~' 1.73.10~!
-0.3 751071 248.10°'  2.62.100' 2.41.10°' 216.10°!
-0.1 7.81.107' 257.10°'  1.83.10°' 2.53.107' 1.6.10°!
0.1 7.96.10°' 1.75.10°' 1.42.107' 1.31.107!' 1.12.107!
0.3 7.09.10°"  6.63.1072 1.92.107' 5.93.1072 7.59.1072
0.5 6.16.107" 6.31.1072 1.44.107' 6.34.102  6.39.1072
0.7 5.81.1071  4.93.107%2 8.72.107%? 4.82.1072 4.84.10°2
0.9 3.89.10°' 5.44.10°2 7.1072  5.29.1072 5.23.102

Table 20: ARFIMA(1,d,0) — Estimation of ¢ with d = 0.4 — RMSE

AIC SIC
é D B) M B @)

-0.9 6.21.10°7 3.38.10 7 1.94.10 T 414102 6.34.10 2
-0.7 641071 983102 2.19.100' 9.11.10°2 1.08.10°!
-0.5 6.92.10°' 2.43.107' 38.58.100' 2.37.107' 3.28.107"
-0.3 7.86.107'  4.76.10°'  4.61.107' 4.72.107! 5.18.107!
-0.1 8.25.10"' 4.94.107' 3.04.107' 5.77.107! 3.1071

0.1 861.10°' 2.34.10°' 1.68.10°' 3.81.100' 1.3.10°!
0.3 8.35.1071 7.1072 2.85.100" 5.38.1072 8.28.10°2
0.5 7.04.10"' 6.46.1072 2.37.107' 6.79.10"2  6.77.1072
0.7 6.79.107' 5.1.1072 2.32.107' 5.14.107%2  5.1.1072
0.9 6.63.10°" 3.11.1072 2.43.107' 3.23.102  3.29.1072
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