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Abstract

This study refers to the earlier work of analysis in the frequency domain. A different
definition of causality is made, and its implications to the general idea of causality are
discussed. The causality relationship between two monetary aggregates, simple sum and

Divisia indices, and their relation with the personal income is analyzed using wavelet
time—scale decomposition.

The author is grateful to William Barnett and James Ramsey for pointing out data sources and encouragement.

Citation: Dalkir, Mehmet, (2004) "A new approach to causality in the frequency domain." Economics Bulletin, Vol. 3, No. 44
pp. 1-14

Submitted: September 17, 2004. Accepted: November 20, 2004.
URL: http://www.economicsbulletin.com/2004/volume3/EB—04C40008A.pdf


http://www.economicsbulletin.com/2004/volume3/EB-04C40008A.pdf

1 Introduction

Many economists are aware that there is actually more time scales in between the short run
and the long run; however, economic theory followed the convenience of representing the time
in just two scales. The advance in computing technology, together with the fast advance
in the field of harmonic analysis now make it possible to investigate empirical economic
phenomena under many different time scales. This study investigates different time scales
in the frequency domain. Lower frequencies in the data will be taken as related to longer
run phenomena, whereas higher frequencies for short run events. This will bring the analysis
the convenience to investigate different “runs” of the underlying economic system from the
frequency domain point of view. The business cycles theory is full of models generating
cycles (earlier works include that of Slutzky 1927, and Yule 1927) be them generated by a
disturbance exogenous to the system, or endogenously generated (Kaldor 1940, Hicks 1950,
Goodwin 1951).

Causality analysis is largely stands on the seminal work by Granger (1986) and his fol-
lowers. His definition will be considered as the canonical definition of causality throughout
this paper. Ramsey (2002), while investigating the money-income relationship, makes use
of the stylized fact that causality relationship is a phase difference relationship in the fre-
quency domain. Following this statement by Ramsey, this paper derives the phase difference
(as defined in Koopmans 1947, p.147 and also in Brillinger 1975) between two time series
and investigates the lead-lag relationship from the theoretical and empirical points of view.
Section 2 shows that the Granger causality test may yield different results for different fre-
quency bands of the data. For some cases, the result may even be spurious. Section 3 is
an introduction to wavelet decomposition, section 4 briefs the Divisia index, and section 5
reports and discusses the empirical results. Section 6 concludes.

2 Derivation of the phase difference

Koopmans (1974) defines the bivariate spectral density of two stochastic processes Y, X
as a function of the frequency in the complex domain as

frx(A) = EZy(dX\) Zx (dA) = ey x(A) — i qvx(A) (1)
where Zy (d\) and Zx(d\) are the spectral measures of the two processes, E is the expec-
tations operator, cy.x(A) and gy,x()\) are the cospectrum and quadrature spectrum of the
series respectively. Z defines complex conjugate of Z, and i = —1. The average phase lead
of Y over X, ¢y x(\) is defined accordingly:



¢y, x(A) = —arctan(gy x () /ey x(N)) (2)

Using the transfer function a(\) = A(e=*) for any lag polynomial A(L), one can derive
the phase difference for two economic aggregates where there is an underlying causality
relationship in the Granger sense:

Y, = ALY+ Ay(L)X, + U, (3)
X, = Bi(L)X,+ Bo(L)Y; + V;

where Aq, Ay and By, By are lag polynomials of order p, q, r, s respectively, and U and V'
are i.i.d. disturbance terms. Then,

fY,X()‘> = EZY(d/\)ZX<d)‘) (4)
= K x{[1 - Ay (eM)]As(e7)op + [1 = Bi(e™)]Ba(e™)o }

where K € R, and 0% and o, are variances of stochastic processes U and V respectively.
Defining

A(L) = éajy' (5)
L) - kf;w
BiL) - ;w
By(L) = ielU
=

one can define the phase difference

qby’X(/\) = — arctan[lmfxx(/\)/Refy?X(/\)] (6)

For the sake of illustration, lets consider the simplified case p =r =2 and ¢ = s = 1. Now
the system of equations under consideration is



Yo = aiYioi+ Yo+ 8Xi 1+ Uy (7)
Xi = X +nXi o+ 0V, +V,

For the system of equations (7), substituting equation (4) in equation (6) and solving for
08, we get

5= o? . sin A + Y2 sin 2\ 4 (1 — 71 cos A 4 75 cos 2A) tan ¢y x (A) s)
N 0% " apsin A + agsin 2\ + (1 — g cos A + ag cos 2)) tan ¢y x (A)

Assuming the last factor nonzero, for the simplified case above notice that 3 =0« 6 =0

and  # 0 < 0 # 0, except for particular frequencies A given ¢y x(\) # 5 . So, a Granger
causality test will generally yield either feedback or inconclusive result for most frequency
bands in the data. The result could be generalized for other values of p, q,r, s. The result of
the Granger causality test depends on the frequency band under consideration.

For this simplified case, it is shown that the null hypotheses of feedback and inconclu-
siveness depends on many factors: the own lag structure of the series, the variances of the
disturbance terms, the phase difference between the series, and most of all, the frequency
A . The above formula may yield zero or nonzero values for g for different values of the
frequency. If the data is decomposed into different frequency bands, it is possible to observe
causality relationships in opposing directions, or even spurious relation between the series
under consideration.

3 Wavelet decomposition

This section is devoted to introduce the wavelet transform to the reader. An attempt is made
to keep the text least technical as possible, but detailed enough to be able to discuss various
aspects of the application. The interested reader may refer to many references present such
as, but not limited to Chui (1992), Gengay et al. (2002), Percival and Walden (2000), and
Daubechies (1994). This study also refers to an excellent and still compact introduction by
Ramsey (2002).

The Fourier transform, which preceded wavelets in harmonic analysis, was a tool to con-
vert the data series in time domain to the frequency domain. However, Fourier transform
does not provide the analyst the valuable information in time domain, like possible changes
in time in harmonic structure. This requirement has been partially fulfilled by the windowed
Fourier transform where a window of fixed length is slid in the time domain to yield time
dependent frequency spectra for analysis. Wavelet bases do a similar task of scanning the
time series for frequencies of a certain range.



One basic superiority of the wavelet transform over the windowed Fourier transform is
that wavelet transform is a band-pass filter at the same time. That is, it gives the strength
of frequencies in a given interval, and by following that over time, the analyst may observe
which frequencies actually dominate the series at a certain time.

Another superiority of the wavelet transform is that it is coarser for lower frequencies, and
gives a more detailed graphical illustration for higher frequencies. For the lowest frequencies
that could be captured, the wavelet transform gets closer to a Fourier transform with a wider
“window”, except for the fact that the former captures a limited number of frequencies. As
the spectrum of frequencies increase, the “window” of the wavelet transform gets narrower,
so changes in the harmonic structure for these frequencies could be followed in more detail
in time scale.

These features of wavelets have some virtues for economic analysis: first of all, as a
band-pass filter, it enables us to make a distinction on the behavior of different frequencies
through time. For instance, the wavelet transformation of a monetary aggregate could
be analyzed separately in a succession of time scales. Lower frequencies will represent a
periodic structure to cover years or decades, higher frequencies seasons, and the highest
frequency band represents months in our case. As we go from lower frequencies to higher,
the transformed series will get finer and finer, enabling us a month by month observation of a
periodic structure that could be defined in terms of months, and year by year observation of
a periodic structure that could be defined in years. In this study, the causality relationship
between money and income will be analyzed in different time scales, thanks to this appealing
property of wavelets. We would be able to see the causal relationship between these two
aggregates in terms of their month-by-month, quarter-by quarter, and year-by-year behavior.

4 Monetary aggregation

The monetary aggregates used most widely by the Central Banks of the world have been
criticized for being simple sum aggregates. Indeed, the simple sum aggregate assigns equal
weights of one for each component, which may not be reliable for monetary aggregates since
perfect substitutability of all monetary assets are assumed. An alternative index derived by
Barnett (1980) is the Divisia index which utilizes the user cost of different forms of money
for weighting rate of change of components to get the rate of change of the index, namely

dlog M, dlogm;
D D )

i
where M is the monetary aggregate, m;,’s are the components of the aggregate, and s;;’s are
“the ith asset’s share in expenditure on the total portfolio’s service flow.” (Barnett, 1987)

The Divisia index is a member of “superlative indexes” class as defined by Diewert (1976).
The changes in the values of components of the index that have lower user costs (higher return
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monetary assets are in this group) will affect the Divisia index more. So, distinction is made
between the components in Divisia index unlike the simple sum.

5 The method and results

This study has a number of aims. First, to verify the direction of causality between monetary
aggregates and output. Second, to compare the results obtained by using two different
monetary aggregates. Third, to observe the change in causality relationships in different
intervals of time, with an emphasis on the “monetary experiment” of the late seventies-early
eighties in the United States.

5.1 The method
The data covers monthly personal income (PI) and monetary aggregates for a thirty year

period between 1962 and 1992. The monetary aggregates are simple sum M1 and M2 (SSM1
and SSM2), and Divisia M1 and Divisia M2 (DM1 and DM2). Personal income is used as
a proxy for the GDP series since the latter does not come as a monthly series. Monthly
series are required for this study to observe the behavior of the data for higher frequencies of
the frequency spectrum. For a discussion of using personal income as a proxy for GDP, see
Ramsey and Lampart (1998). The Granger causality test is the Wald variant of the Granger
test as explained in Granger and Newbold (1986, p.260). Nelson and Schwert (1982) report
a serious loss of power of the test when it is based on heavily parameterized models. For that
reason, the Schwartz Bayesian Criteria, which penalizes number of parameters more heavily
compared to the Akaike Information Criteria, is selected to determine the lag lengths. Also,
Geweke, Meese, and Dent (1983) indicate a preference for the Wald variant of the Granger
test which has been used in this study. The procedure is thus estimating the following models
separately using ordinary least squares.

K K

Yo = ) Y+ piMij+e (10)
j=1 j=1
K

i = ) Vi +é& (11)
j=1

where K is the lag length determined using the Schwartz Bayesian criteria, Y is income, M
is the monetary aggregate, and {¢;} and {} are the residual series. Let 6% and 63 denote
the residual variance estimates for the models above, respectively. Then the test statistic for
sample size T' is

(12)

which has an asymptotic x? distribution with K degrees of freedom under the null hypothesis
that M does not cause Y. For testing the causality relationship other way around, Y becomes



the independent variable, and M becomes the dependent variable in equation (10), and
equation (11) is estimated for M.

Following Ramsey and Lampart (1998), the data is taken “as is” for wavelet decomposition
together with its log difference transformation. Gengay, Selguk, and Whitcher (2002, p.152,
Table 4.4), display their results on the unit root tests for monthly U.S. M1 and production
indexes for the period 1959-1999. Similarly, Serletis (2001, p.144, Table 11.1) report the unit
root test results for different quarterly monetary indexes for the period 1960-1999. Both
report that M1 is integrated of degree 1. Serletis also reports that all monetary indexes
used in this study are of I(1). Gengay, Selcuk, and Whitcher (2002, p.153) is using the
logged data, and a cointegration-robust version of the Granger causality test to get around
the problem of integration. We follow Ramsey and Lampart’s (1998) approach to include
log difference series in our study. The wavelet decomposition series have been obtained from
the raw data without any transformation. Wavelet decomposition is applied to the raw data
using Daubechies 8 (or D(8)) orthogonal wavelet.

The Daubechies discrete wavelet filters may be interpreted as generalized differences of
adjacent averages (Gengay et al., 2002) and they are related with difference operators. The
wavelet filter used in this study, Daubechies 8 has four vanishing moments. Thus, it has the
ability to generate stationary series from a series integrated up to and including level 4. One
of the reasons why this group of wavelets has been chosen is to overcome the problem of
nonstationarity in the income and monetary aggregate series. Another reason for this choice
is the lower leakage of the filter (as a band-pass filter) at all frequency levels, and smoothness
of the wavelet function for the purposes of the data series to be examined. The Daubechies
discrete wavelet filters are widely used, and available in most mathematical software. Tests
with another group of filters, quadratic spline wavelets, showed the results are basically
robust to the choice of the wavelet base.

5.2 Results
In an earlier study, Ramsey and Lampart (1998) find interesting causality relationships

between personal income (PI) and M1. For the finest scale, the relationship is “PI causes
M1,” and for more rough scales, the direction of causality turns the opposite way. At
the lowest frequencies, feedback is reported to be the relation. They also report that, the
causality relationship depends on the time period chosen. For instance, they report a change
in the direction of the causality relationship at the finest scale for the periods 1970-1979 and
1980-1994. In a similar study, Gengay, Selguk, and Whitcher (2002) report similar results for
the US industrial production index and the M1. They use a cointegration-robust version of
the causality test for the period 1959-1999 with logarithmic data. Their test is inconclusive
for the main series, and similar with Ramsey and Lampart for the decomposed series. For
the rest of the analysis, the reader may refer to Tables I-IV of the appendix II. In order to
be able to observe the changes in the causality relation, three periods of 128 months each is
taken together with a combination of the later two periods (1972:9 to 1992:12). The result
for the 3rd level decomposition of DM2 is particularly interesting. For periodic movements of
periods 5 to 8 months, the causality relation changes direction for all three sub-series. This



is an expected result for the second and third periods because of the so-called “monetary
experiment” of the early eighties. The substantial change in the monetary policy should be
showing up in the causality relations. On the contrary, there is no change in causality for
the 4th level decomposition (9-16 months) of DM1 for these periods. Also, no change could
be observed for SSM2 first level decomposed series. As for the change of direction between
the first and second period series, we have 3rd level decomposed series of both DM1 and
DM2, which is not easy to explain from the economic theory viewpoint. Here, the Divisia
series generate a number of interesting results above even under a relatively short period of
128 months. Also, Divisia index generates less feedback and inconclusive results compared
with simple sum index for both M1 and M2. Therefore, one may conclude that the Divisia
indices reflect the causality relation with a higher degree of success compared to the simple
sum indices, even with shorter sets of data. As for the consistency of the prior studies, none
of the series tested here verified a causality of “income causes money” for the finest scale
decomposition, and “money causes income” for the two consecutive levels. The conclusion
so far is that the causality relation between money and income depends on the period of
interest, the method of aggregation (simple sum vs. Divisia), and the level of aggregation
(M1 vs. M2).

6 Conclusion

This study sheds some light on the causality relationship between money and output using
personal income as a proxy. The wavelet transform makes it possible to see this relationship
in different levels of resolution. Wavelet decomposition makes it possible to see in which
timescale is the change: for the majority of the cases, the direction of causality is found to
be “money — income” for all scales of resolution. This result illustrates the effectiveness of
monetary policies in the U.S. economy. There are serious differences both in the direction
of causality, and the conclusiveness of the test for periods 1962-1971, 1971-1982 and 1982-
1992 in all scales. This indicates a change in the monetary policy between these periods.
Monetary policy seems to become more effective in the 80s and early 90s compared to the
70s. The change in the causality relationship in the lower frequencies (wider time scope)
may be due to change in the general monetary policy, or, as Ramsey and Lampart argue,
may be a result of the phase difference between the series. Under the findings of section 2,
our conclusion is that the causality relationship depends on the scale under which the series
is observed. Wavelet decomposition is a valuable tool in that sense. The second conclusion is
that since the null could hold spuriously for certain values of lag coefficients, phase difference,
and frequency, the empirical results should be taken skeptically.
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Appendix I: Wavelet decomposition

This appendix refers to the works by Ramsey (2002), Gengay et al. (2002), Daubechies
(1992), and Percival and Walden (2000).

A wavelet could be defined as a function that satisfies the wavelet admissibility condition

/000 wd)\ < 00 (13)

where W(X) = [7_(t)e=dt is the Fourier transform of 1 (¢). An equivalent condition is
v(0) =0, or

/oo WY(t)dt = 0. (14)

A secondary condition for 1 (t) is unit energy,

/ )Pt = 1. (15)

[e.9]

An example is the wavelet related to the first derivative of the density of the normal
distribution, which satisfy all the conditions above:

\/ﬁt 6_t2 /20.2 .

Y(t) = 03/2 174 (16)

For a suitable choice of function ®(-) satisfying [°°_ ®(¢)dt = 1 the corresponding “scaling
function” is

s t—=27k
(I)J7k:2 2@( o7 ) (17)
and the corresponding wavelets are
=2k
b =200 ), G=10 (18)
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with the properties of ¥(-) defined above.
Define

s = [ 1OB(b (19)
wa = [ FOvs0d, J= 1 (20)

Now the function f(-) could be expressed by

J&)=S;+Wr+Wya+ ...+ W+ ...+ W, (21)

where

SJ = Z 5J7k(bj7k;(t) (22)

Wi = ) wibia(t), j=1,...,J (23)
k

If we think f(-) as a binary color coded picture, S; gives us a smooth background, and
with the addition of each W;, j = J,...,1 we start to see more and more details, and in
the end, the entire picture, f(¢), becomes apparent. Wavelets make it possible to examine
continuous functions or time series in different levels of detail, namely,

S; = Sy+Wr4 ...+ Wi (24)
f = SQ.
In order to represent discrete time series in vector form y = (y1,ys, ..., yr)’, the discrete

wavelet transform could be defined as

w =Wy (25)

where the orthonormal 7" x T matrix W is to be determined by a procedure called the
“pyramid algorithm.” (see Gengay et al.) The vector w has T' (assumed to be a power of 2)
elements where the first 7/2 entries are w; ;’s, the following 7'/2* entries are wyx’s and so
on. The last T/27 entries are S7k’S.

The wavelet used in this study, Daubechies extremal phase wavelet (denoted by D(L)) gets
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closer to an ideal filter with increasing L. The wavelet D(2) (also known as the “Haar
wavelet,” the first wavelet in history) is simply differences of adjacent moving averages
of a series, with increasing number of data points averaged as the scale becomes coarser.
Specifically, the choice wavelet employed in this study, D(8), does not have a closed form. The
transform in this case is entirely numerical. Further technical details of wavelet transform
requires far more space than a shorter appendix. Interested reader may refer to the references
cited at the beginning of this section.

In this study, the wavelet coefficient vector w is derived using the TimeStat™™ software.
For the highest frequency component, the second half of the vector (i.e., the part which has
no information concerning the highest frequency component) has been set to zero, and the
vector is transformed back to the time domain using the inverse wavelet transform. Likewise,
for isolating a certain frequency level, the coefficients other than those representing that
frequency level have been set to zero, and the series have been converted back to the time
domain. Then, Granger causality tests (that are defined in the time domain) have been
applied to those time series where a certain band of frequencies are isolated. That way, it
was possible to observe causality relationships within a certain frequency band.
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Table 1

Appendix II: Tables

simple sum M1 index (SSM1).
Significance level is 1% for cells marked by a . Otherwise it is 5%.
(F: feedback, I: inconclusive, —: income causes money, < : money causes income. )

Granger causality test results between personal income (PI) and

‘ period in months ‘

Time Periods Included ‘

61:1-71:8 71:9-82:4 82:5-92:12 71:9-92:12

PI m1l not filtered I I — —
Alog PI Alogml not filtered I I I

PI[6] m1[6] 33-128 F F I —

PI[5] m1[5] 17-32 I F F F

PI[4] m1[4] 9-16 F — I I

PI[3] m1|3] 5-8 F F F I

PI[2] m1|2] 3-4 F F F — 7

PI[1] m1[1] 2 F — I F
Table II Granger causality test results between personal income (PI) and

simple sum M2 index (SSMZ2).
Significance level is 1% for cells marked by a . Otherwise it is 5%.
(F: feedback, I: inconclusive, —: income causes money, < : money causes income. )

‘ period in months ‘

Time Periods Included ‘

61:1-71:8 71:9-82:4 82:5-92:12 71:9-92:12

PI ml not filtered I F I I
Alog PI Alogml not filtered I I I I
PI[6] m1][6] 33-128 F — 7 F F
PI[5] m1[5] 17-32 F F F —1
PI[4] m1[4] 9-16 F F F —
PI[3] m1|3] 5-8 F F — —
PI2]  mi[2] 34 F F F -
PI[1]  mi[l] 2 F — — F
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Table 111 Granger causality test results between personal income (PI) and
Divisia M1 index (DM1).

Significance level is 1% for cells marked by a f. Otherwise it is 5%.

(F: feedback, I: inconclusive, —: income causes money, <—: money causes income. )

’ \ period in months \ Time Periods Included ‘
61:1-71:8 71:9-82:4 82:5-92:12 71:9-92:12

PI m1l not filtered I I — —
Alog PI Alogml not filtered I I I I
PI[6] m1[6] 33-128 F F F I
PI[5] m1[5] 17-32 I F F F
PI[4] m1[4] 9-16 F — — —
PI[3] m1|[3] 5-8 — — F F
PI[2] m1|2] 3-4 F F F —
PI[1] m1[1] 2 F F I F

Table IV Granger causality test results between personal income (PI) and

Divisia M2 index (DM2).
Significance level is 1% for cells marked by a . Otherwise it is 5%.
(F: feedback, I: inconclusive, «—: income causes money, —: money causes income. )

’ ‘ period in months ‘ Time Periods Included ‘
61:1-71:8 71:9-82:4 82:5-92:12 71:9-92:12

PI m1l not filtered I — I I
Nlog PI  Alogml not filtered I I I I
PI[6] m1[6] 33-128 F I — F
PI[5] m1[5] 17-32 I F F —
PI[4] m1[4] 9-16 F F F I
PI[3]  ml[3] 5-8 — — — —
PI[2] m1|2] 3-4 F F — —
PI[1] m1[1] 2 F —T I F
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