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Abstract

This paper proves the existence of non−empty cores for directed network problems with
quotas and for those combinatorial allocation problems which permit only exclusive
allocations.
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Introduction 
 
Networks among a group of agents, arise very often in society as well as in 
economic analysis. In a network, pairs of agents are linked to each other in a 
symmetric relationship. Slikker and van den Nouweland [2001], Dutta and 
Jackson [2003] and Jackson [2004], study the problem of network formation. In a 
recent work, Jackson and van den Nouweland [2004] study the existence of 
networks that are stable against changes in links by any coalition of individuals. 
However, not all interactions among individuals are of necessity symmetrical. 
Thus, for instance, when an agent decides to buy an object from another 
individual, it is not necessary that the resulting transaction, materializes in a direct 
exchange of objects. This problem was analyzed rigorously by Shapley and Scarf 
[1974], where each of a set of individuals was initially endowed with exactly one 
object and an allocation of the objects which could not be improved upon by any 
coalition of individuals by redistributing their initial endowments, was sought. An 
allocation such as this was called core stable and Shapley and Scarf [1974], used 
Gale’s Top Trading Cycle Algorithm to show that a core stable allocation for such 
a situation would always exist. 
In the situation that Shapley and Scarf[1974] analyzed, an allocation did not 
necessarily correspond to a network. If one agent received the object owned by a 
second, it did not follow that the second received the object owned by the first in 
return. An allocation would however correspond to what is known as a directed 
network. If a link was established from one agent to a second, all that it would 
imply is that the first agent received the object owned by the second. 
The situation studied by Shapley and Scarf[1974] was characterized by two 
features: (a) each agent consumed exactly one object: (b) excludability in 
consumption. While, the first feature was perhaps only a simplifying assumption, 
meant largely to facilitate exposition as subsequent research as well as a later 
section of our paper reveals, the same cannot be said of the second feature. 
Excludability in consumption implies that at most one agent can consume a 
particular item, a characteristic associated with “private goods”. There are many 
situations and objects which do not qualify this property. For instance, an internet 
server can be linked simultaneously to several other internet servers, not just one. 
A particular object or facility can be simultaneously used by several users, whose 
number does not exceed a pre-assigned quota. Such facilities or goods are akin to 
public goods. It is precisely such goods that we have in mind in the present 
context. 
The simultaneous usage of a facility or a service does not necessarily imply that 
agents need to share it. Thus, for instance the service provided by a street lamp, or 
a traffic constable though simultaneously consumed by its beneficiaries, need not 
imply that its users are share holders of the facility.  
As in Shapley and Scarf[1974], consider a finite population of agents, each of 
whom is initially endowed with a single item. Each item has a capacity denoting 
the number of agents it can simultaneously cater too. The quota of each agent 
which is assumed equal to the capacity of the item she is initially endowed with, 
imposes an upper bound on the number of items she can consume. The 
requirement that the quota of an agent is equal to the capacity of her initial 
endowment, implies that in any directed network that would be of interest in the 
present context, the number of links that terminate at any agent is equal to the 
number of links that emanate from her. In particular a link can be a loop i.e. begin 



and terminate at the same agent. The problem we are concerned with here, is with 
the existence of a directed network which satisfies individual quotas and is core 
stable in the following sense: there does not exist any coalition of agents who can 
link up among themselves and do better than at the existing network. We show 
that a slight modification of the Gale’s Top Trading Cycles Algorithm that was 
used by Shapley and Scarf[1974], proves the existence of a core stable network 
for every directed network problem with quotas. 
A variant of a directed network problem as defined in this paper is a combinatorial 
allocation problem (CAP). A CAP is a resource allocation problem, in which a 
non-empty set of items are to be allocated across a set of agents. Agents are 
assumed to value bundles of items. The CAP is relevant to many interesting and 
important real-world applications, including scheduling, logistics and network 
computation domains. When the set of items is identical to the set of agents, we 
have a directed network problem. 
An allocation of items in a CAP, where each individual is initially endowed with a 
distinct non-empty set of items is said to be exclusive, if no two items share an 
item at the allocation. 
Assuming that the maximum number of items that each agent can consume at any 
allocation is equal to the number of items she was initially endowed with, and 
restricting attention to exclusive allocations, we show that a core stable allocation 
always exists for such CAP’s. The proof of this result is very similar to the proof 
of the non-emptiness of the core of a directed network problem with quotas. 
Through out the analysis reported here, we focus on stability as a solution 
concept. This clearly rules out the possibility of ex-post re-contracting among the 
agents. 
In the mechanism design literature, strategy-proofness or dominant strategy 
implementation has often been invoked as the criterion that a mechanism is 
required to satisfy. Without going into the merits or validity of strategy-proofness 
for the networks we propose here, it is worth pointing out that whether a resource 
allocation mechanism is otherwise acceptable or not, if it fails to prevent ex-post 
re-contracting among agents, then the purpose of decentralization is obviously 
defeated. Thus, stability in the sense we use, is a minimal requirement that a 
mechanism ought to satisfy, in order to be credible. 
The requirement of stability may sometimes make the additional requirement of 
strategy-proofness superfluous. The resource allocation obtained via strategic 
misrepresentation of one or more agent’s preference, may lead to the possibility of 
ex-post re-contracting among the agents. The likelihood of the adverse 
consequences on oneself arising out instability, should by itself deter an agent 
from acting strategically. 
 
The Directed Network Problem 
  
Given a non-empty finite set I of agents, a preference relation for agent i∈I is 
summarized by a linear order R(i) over I. 
A directed network is a function A: I → 2I \{φ}, where I is a non-empty finite set 
of agents. A directed network is said to be a network if for all A∈Λ and i,j∈I: 
[j∈A(i) implies i∈A(j)]. 
We assume that each agent has a quota which is a natural number less than or 
equal to the cardinality of I. Hence, a quota function is a function q:I→ {0,….|I|}. 



A directed network problem with quotas is the ordered pair E = (Λ(q), <R(i) / 
i∈I>), where Λ(q) = {A/ A is a directed network satisfying [for all i∈I: |A(i)| ≤ 
q(i)], |A(i)| < q(i) implies i∈A(i), and |A(i)| = q(i) for some i∈I}. 
A directed network A for E =  (Λ(q), <R(i) / i∈I>) is said to be a feasible network 
(or simply “feasible”) if A∈Λ(q). 
 
The reason why there may be no directed network at which all agents exhaust 
their quota is illustrated by the following lemma. 
 
Lemma 1: Let I = {1,…,n} for some positive integer n ≥ 3 and let q be a quota 
function such that q(1) =1, q(i) = n for I > 1. Let A∈Λ(q). Then, there exists a 
subset S of I, containing at least n-2 agents, such that |A(i)| < q(i) for all i∈S. 
 
Proof: Let A ∈Λ(q) be such that for at least one i∈{2,….,n}: |A(i)| = n. Without 
loss of generality suppose |A(n)| = n. Thus, A(n) = I and A(1) = {n}. Since q(1) = 

1, 1∉ . Thus, |A(i)| < n for all i∈{2,….,n-1}. Thus, at least n-2 agents in I 

must have unexhausted quotas at any A ∈Λ(q). Q.E.D. 
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A feasible network A is said to be blocked by a coalition (: a non-empty subset of 
agents) M, if there exists a permutation p: M→ M and a function y: M → 

such that for all i∈M: (i)p(i) R(i) y(i); (ii) p(i)∈I\A(i).  
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An alternative way of defining the concept of blocking by a coalition would be by 
using the concept of a unilateral hyper-relation due to Aizerman and Aleskerov 
[1995]. A unilateral hyper-relation on I is a subset of 2I×I. 
For i∈I and (S, j) ∈2I×I, we write S ≥i j if and only if either j∈S or kR(i)j for all 
k∈S. 
Clearly ≥i is a unilateral hyper-relation for all i∈I. 
A feasible network A is said to be blocked by a coalition (: a non-empty subset of 
agents) M, if there exists a permutation p: M→ M such that for no i∈M is it the 
case that A(i) ≥i p(i).  
A feasible network A is said to belong to the core of the directed network problem 
with quotas E, if it is not blocked by any coalition. 
The core of E, denoted Core(E) is the set of feasible networks belonging to the 
core of E. 
 
Given a list of distinct agents i1,…,ik we say that a transaction is completed along 
the cycle (i1,…,ik) if each ij∈{i2,…,ik} receives ij-1 and i1 receives ik.  Thus, if k = 
1, then after completion of transaction along the cycle, agent i1 receives i1. 
 
The proof of the following theorem, which is a generalization of the one in 
Shapley and Scarf[1974], relies on a minor variation of the Gale’s Top Trading 
Cycles Algorithm. Our proof itself is a modification of the one in Shapley and 
Scarf[1974]. 
   
Theorem 1: If E is a directed network problem with quotas, then Core(E) is non-
empty.  



 
Proof: Stage 1: Each agent i points to the agent who owns her most preferred 
object according to the linear order Ri. Since, the number of agents is finite, there 
exists at least one subset of agents who form a cycle, i.e. there exists a set i1,…,ik 
of agents, such that ij is the most preferred item of agent ij-1 for ij∈{i2,…,ik} and i1 
is the most preferred item of agent ik. Since each agent points to exactly one agent, 
no two distinct cycles can share an agent. Otherwise, there would exist an agent 
who points to two different agents, contrary to hypothesis. Complete the 
transaction along each such cycle. 
Each agent who does not get an object she had pointed to, was not part of a cycle. 
Each agent who received an object at this stage, strikes that object off from her 
linear order.  
Each agent who received an object up until this stage, reduces her quota by one, 
to obtain revised quotas. Any agent whose quota has been reduced to zero, 
withdraws from the procedure. If in the process all agents withdraw from the 
procedure, the procedure terminates. Otherwise the procedure moves to Stage 2, 
with participating agents being only those agents who either did not receive an 
item at Stage 1 or whose revised quota after stage 1 is positive. No agent whose 
quota is incomplete is removed from the linear order of any participating agent. 
Each agent who participate in the subsequent stage removes from her linear order 
all agents who have exhausted their quota. Each agent who received an object at 
Stage 1 and proceeds to participate in the subsequent stage, removes from her 
linear order the (owner of) the item she received at Stage 1.  
Stage 2: Repeat Stage 1, among the participating agents. (This may involve an 
agent pointing to an agent she had at stage 1). Each agent who received an object 
up until this stage, reduces her quota by one, to obtain revised quotas. 
Repeating the process at most a finite number of times, we arrive at a stage where 
either all agents have filled their quota, or the agents who have not filled there 
quota, have by now struck all agents off their list. 
The procedure terminates now with the directed network A being defined such that 
for all i∈I, A(i) is the set of items currently in the possession of agent i. 
We claim that A belongs to the core of E. A is clearly feasible. If for all i∈I it is 
the case that |A(i)| < q(i) ≤ |I|, then no agent would have struck all agents off from 
her list of preferences, and hence the procedure could not have terminated. Thus, 
there exists i∈I, such that |A(i)| = q(i). 
Suppose there is a coalition M which blocks A. Thus there exists a permutation p: 
M→ M and a function y: M →  such that for all i∈M: (i)p(i) R(i) y(i); (ii) 

p(i)∈I\A(i).  
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Without loss of generality let an agent in M whose quota was exhausted first 
among all agents in M, be denoted 1. If agent 1’s quota was exhausted at the first 
stage of the procedure, she clearly got her best item and therefore could not be 
part of a blocking coalition. Hence no agent whose quota was exhausted at the 
first stage would be part of a blocking coalition. If agent 1’s quota was exhausted 
at stage 2, then the only agents that she could form a blocking coalition with, must 
have exhausted their quota in stage 1. Since agents who exhausted their quota in 
stage 1 cannot belong to M, it is not possible for agent 1 to belong to M either. 
Thus, no agent whose quota was exhausted at stage 2 can belong to M. 
Proceeding thus, we see that if agent 1’s quota was exhausted at stage k, then the 
owners of the items she could form a blocking coalition with must have exhausted 



their quota at a previous stage. Since agent 1 is assumed to be among the first to 
exhaust her quota among the agents in M, M cannot be a blocking coalition. This 
contradiction establishes the non-emptiness of the Core(E). Q.E.D.  
 
The purpose of requiring the termination rule in the above procedure to permit 
agents whose quota may have remained unexhausted may once again be 
illustrated by the following example. 
 
Example 1: Let I = {1,2} and suppose q(1) = 1 where as q(2) = 2. Let E be a 
directed network problem where agent 1 prefers 1 to 2. If A belongs to Core(E), 
then A(1) = {1}. Thus, whatever be the preference of agent 2, A(2) = {2}. In fact 
this would be the unique feasible network in Core(E). Clearly, the quota of agent 2 
remains unexhausted at A.  
However, thee feasible network where agent 1 gets 2 and agent 2 gets both 1 and 
2, exhausts the quota of all agents. This network is blocked by agent 1 and hence 
does not belong to the core. 
 
Note: Suppose the directed network A obtained in the proof of theorem 1 above, 
was the outcome of a procedure that terminated at stage K ≥ 1. For all agents i∈I, 
who received item j at stage K, let pK =  pi(j) = 1. 

If K > 1, then having defined pk for stages K, K-1,…, L < 1, define pL-1 = + 

1. For all i ∈I, who receive an item j at stage k∈{L-1,…,K}, let p

∑
=

K
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i(j) = pk. 
For i∈I and j∈A(i), pi(j) may be interpreted as a personalized price of item j to 
agent i. 
For all j∈I, let p(j) = min {pi(j) / j∈A(i), i∈I}. For i∈I and j∈I\A(i), let A-j(i) = 
{h∈A(i)/ jR(i)h}. 
The pair (A, <pi(j)/ j∈A(i), i∈I> satisfies the following property: (i) for all i∈I and 
j∈I\A(i) with A-j(i) ≠φ: p(j) > ∑
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(i) says that for any agent i and any item j not belonging to A(i), the total payment 
that agent i makes for items she does not prefer to item j, is less than the least 
personalized price paid for item j. Now, (ii) follows from (i) since all personalized 
prices computed above, are strictly positive. (iii) says that, given any agent i, the 
sum of payments made by i is equal to the sum of payments received by i . 
 
 
A Combinatorial Allocation Problem and Its Non-empty Core 
 
In a combinatorial allocation problem (CAP) there is a non-empty finite set G of 
discrete items and a non-empty finite set I of agents. Each agent i∈I, is initially 
endowed with a non-empty set of items S(i), such that: (a) = G; (b) for all 

i,j∈I, with i≠j: S(i)∩S(j) = φ.  
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A preference relation for agent i∈I is summarized by a linear order R(i) over G. 
An allocation is a function A: I → 2G \{φ}. 
For all i∈I, A(i) is the bundle received by agent i.  



An allocation A is said to be exclusive if for all i,j∈I with i ≠ j: A(i) ∩ A(j) = φ. 
Let q: I→ N(: the set of natural numbers) be such that for all i∈I, q(i) = |S(i)|, i.e. 
the cardinality of S(i). 
Let Λ(q) = {A/ A is an exclusive allocation satisfying |A(i)| = q(i) for all i∈I}. 
An allocation A is said to be feasible if A∈Λ(q).   
For i∈I and (S, a) ∈2G×G, we write S ≥i a if and only if either a∈S or bR(i)a for 
all b∈S. 
Clearly ≥i is a unilateral hyper-relation for all i∈I. 
A feasible allocation A is said to be blocked by a coalition (: a non-empty subset 
of agents) M, if there exists a permutation p: M→ M and a function x: 
M→U such that for no i∈M is it the case that A(i) ≥

Ii
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A feasible allocation A is said to belong to the core of the CAP, if it is not blocked 
by any coalition. 
The core of the above CAP, denoted C* is the set of feasible networks belonging 
to its core. 
 
Given a list of distinct agents i1,…,ik and a set of items x(i1),…, x(ik) with 
x(i)∈S(i) for all i∈{i1,…,ik} we say that a transaction is completed along the cycle 
(i1,…,ik) if each ij∈{i2,…,ik} receives x(ij-1) and i1 receives x(ik).  Thus, if k = 1, 
then after completion of transaction along the cycle, agent i1 receives x(i1). 
 
The proof of the following theorem, which is again a generalization of the one in 
Shapley and Scarf[1974], is almost identical to the proof of our Theorem 1. 
   
Theorem 2: Given a CAP as defined above, C* is non-empty. 
  
Proof: The only respects in which the proof here differs from the proof of Theorem 
1, is that every time a transaction is completed along a cycle, all the items 
involved in the transaction are struck off from the list of all agents who participate 
in the subsequent stage of the procedure and the procedure stops when the quotas 
of all agents have been exhausted. Let an allocation A be the outcome of the 
procedure thus defined. 
We claim that A belongs to the C*. A is clearly feasible. 
Suppose there is a coalition M which blocks A. Thus there exists a permutation p: 
M→ M and functions x: M→ ,  y: M →  such that for all i∈M: 

(i)x(p(i)) R(i) y(i); (ii) x(p(i))∈G\A(i).  
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Without loss of generality let an agent in M whose quota was exhausted first 
among all agents in M, be denoted 1. If agent 1’s quota was exhausted at the first 
stage of the procedure, she clearly got her best item and therefore could not be 
part of a blocking coalition. Hence no agent whose quota was exhausted at the 
first stage would be part of a blocking coalition. If agent 1’s quota was exhausted 
at stage 2, then the only agents that she could form a blocking coalition with, must 
have exhausted their quota in stage 1. Since agents who exhausted their quota in 
stage 1 cannot belong to M, it is not possible for agent 1 to belong to M either. 
Thus, no agent whose quota was exhausted at stage 2 can belong to M. 
Proceeding thus, we see that if agent 1’s quota was exhausted at stage k, then the 
owners of the items she could form a blocking coalition with must have exhausted 



their quota at a previous stage. Since agent 1 is assumed to be among the first to 
exhaust her quota among the agents in M, M cannot be a blocking coalition. This 
contradiction establishes the non-emptiness of C*. Q.E.D.  
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