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Abstract

In this paper we propose a unified framework for testing weak separability. We present a new
three−step procedure, which is a joint test of necessary and sufficient conditions that takes
account of possible measurement error and incomplete adjustment. We illustrate the
operational capability of the procedure with an empirical example. Our procedure works well
in medium sized samples, but at the present time may not be practical for datasets with
extremely large sample sizes. As computing technology continues to advance, however,
high−powered methods like the one we propose should supplant testing approaches that were
originally designed to circumvent computational limitations.
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1. Introduction 
Weak separability is a fundamental condition for the existence of economic aggregates and 
the use of two-stage budgeting. It is therefore appropriate that this property should be tested in 
empirical work concerning aggregation and demand analysis. Two approaches have been used 
in practice: statistical tests within a parametrically formulated demand system, or 
deterministic checks using revealed preferences. The problem with the first approach is that it 
can crucially depend on the choice of specific functional form. This paper therefore 
concentrates on ways to improve the second approach, usually referred to as the 
nonparametric approach. 

The nonparametric test used almost exclusively in practice is the sequential procedure 
based on Varian (1982, 1983) implemented in the computer program NONPAR, see for 
example Swofford and Whitney (1987), Manser and McDonald (1988), and Rickertsen 
(1998). The procedure suffers from a number of deficiencies, however. (i) Necessary and 
sufficient conditions are tested sequentially and not jointly. (ii) The procedure does not 
account for stochastic variation in the data, such as measurement error. (iii) When applying 
the procedure to time series data, it assumes that all adjustment of expenditure to optimal 
levels takes place within one period. For a variety of reasons, such as habit formation and 
adjustment costs, this may not be the case. These deficiencies imply that the sequential 
procedure is biased towards rejection of weak separability. Barnett and Choi (1989) showed 
in a Monte Carlo study that the rejection rate of the NONPAR test greatly exceeded the 
nominal significance level.  

There have been a number of papers that have addressed these deficiencies separately. 
For example, Varian (1985) treats measurement error while Swofford and Whitney (1994) 
discuss incomplete adjustment. In both cases the proposed solutions strained the 
computational limitations of the time, and have not been implemented in empirical 
applications.  

In this paper, we propose an approach that synthesizes the above developments into a 
unified framework for testing weak separability. We present a new three-step procedure, 
which is a joint test of necessary and sufficient conditions that takes account of the 
possibilities of both measurement error and incomplete adjustment. To demonstrate the 
operational capability of the procedure, we illustrate it with an empirical example. 

2. A New Procedure for Testing Weak Separability  
Let 1( ,..., )nx x x=  denote a vector of quantities for n goods, 1( ,..., )np p p=  the corresponding 
vector of prices, and total expenditure Y px= . Let also ( , )x y z=  and ( , )p r v=  denote 
partitions of the quantity and price vectors into two groups, 1 1( ,..., ); ( ,..., ){ }m my y y r r r= =  

and 1 1( ,..., ); ( ,..., ){ }n m n mz z z v v v− −= = . Varian (1982), building on Afriat (1967), showed that 
a data set is consistent with the utility maximization hypothesis if and only if it is consistent 
with the generalized axiom of revealed preference (GARP), and gave a procedure for testing 
GARP. 

2.1 The New Procedure 
The procedure consists of three steps for testing the null that the y goods are weakly separable 
from the z goods, possibly with incomplete adjustment and measurement error.  
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I) Check if the data set ( , ) : 1,...,{ }i ir y i T=  satisfies deterministic GARP. If so then 
proceed directly to step III, otherwise go to step II. 

II) Calculate the minimal perturbation of the quantity data that will satisfy GARP. If 2σ∗ , 
the bound on the variance of the measurement error given in section 2.2, is smaller than 
our prior belief for the true variance, then use the measurement error corrected 
quantities ŷ  in step III. Otherwise reject the null.  

III) Perform a (possibly modified) Swofford-Whitney test using ( , ) : 1,...,{ }i ir y i T=  or 
ˆ( , ) : 1,...,{ }i ir y i T=  depending on whether we come from step I or II. This will lead us 

to either accept weak separability with complete adjustment, accept weak separability 
with incomplete adjustment or reject the null, see section 2.3.  

This procedure is not a complete solution to the problem, since steps II and III are performed 
sequentially and the possibility of measurement error in the z goods is not taken into account. 
It is, however, a significant generalization and improvement on the Varian procedure.1 

2.2 Measurement Error Adjusted GARP Tests 
Varian (1985) provided a test of optimizing behavior with measurement error in the quantity 
data. When applied to a GARP test of the y-goods, the null hypothesis is that the true 
quantities, 1,...,( )i i i

mξ ξ ξ= , 1,...,i T= , satisfy GARP. The true data is assumed to be related to 
the observed data by  

1( )i i i
k k kyξ ε= + ,  (1) 

where the measurement errors i
kε  are i.i.d. with mean zero and variance 2σ . 

Varian (1985) suggested constructing the minimal perturbation of the data that satisfies 
GARP, 1ˆ ˆ ˆ( ,..., )i i i

my y y= , 1,...,i T= . That is ŷ  minimizes the sum of squared proportional 
perturbations, 
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subject to the constraint that ( , ) : 1,...,{ }i ir i Tζ =  satisfies the Afriat inequalities  

, 0i iV iµ > ∀ . (3) 

( ) ,i j j j i jV V r i jµ ζ ζ≤ + − ∀  (4) 

and where the Afriat indices iV  and iµ  are treated as nuisance parameters. We refer to 
ˆ arg min( ( ))y R ζ=  as the measurement error corrected quantity data.  

                                                 
1 We could also test whether the dataset ( , ) : 1, ...,{ }i ip x i T=  satisfies GARP, with y possibly replaced by ŷ . 
This is a necessary condition for the null of weak separability with complete adjustment, allowing for possible 
measurement error. It need not hold under weak separability with incomplete adjustment, however. 
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If the measurement errors were somehow observed and normally distributed, the test 
statistic ( ) 22 2( )/ /i

kR ξ σ ε σ=∑∑  would be 
2

Tm
χ . The null of weak separability would be 

rejected if the test statistic exceeded Cα , the critical value at the α significance level of the chi 
squared distribution. Since the true data is not observed, Varian (1985) proposed rejecting the 
null if 2ˆ /R Cασ ≥ , where ˆ ˆ( )R R y=  denotes the minimized objective function (2). This test 

procedure is conservative, since by definition of the minimal perturbation, 2ˆ ( )i
kR ε≤∑∑  

under the null.  

There are several limitations with this approach. To begin with, the variance of the 
measurement error is unknown. Following Varian we can calculate 2 ˆ /R Cασ∗ = , which can be 
interpreted as the largest measurement error variance for which we would reject the null. This 
value can be compared to our prior belief concerning the error variance, 2

priorσ . If 2σ∗  is 

smaller than 2
priorσ , then we might not wish to reject the null even if deterministic GARP does 

not hold. Varian (1985, p. 449) suggested using a parametric fit of the data to arrive at an 
estimate of the error variance, which could be used in place of 2

priorσ . Another limitation is 
that the computational burden of minimizing (2) is considerable. As far as we are aware, the 
authors of this paper are the first to implement it empirically for GARP.2  

2.3 Swofford and Whitney's Test of Weak Separability with Incomplete Adjustment 
Swofford and Whitney (1994) assumed that expenditure on the separable group might not 
adjust completely within one period, and thus be suboptimal. They showed that the necessary 
and sufficient conditions for weak separability of y from z, with incomplete adjustment of 
expenditure on the y goods, are that there exist numbers iU , iτ , iV , iµ  and iφ such that  

0iU > , 0iτ > , 0iV > , 0iµ > , 0iφ >   i∀ , (5) 

( )i j j j i jV V r y yµ≤ + −   ,i j∀ , and (6) 

( ) ( )i j j j i j j i jU U v z z V Vτ φ≤ + − + −  ,i j∀ , (7) 

where θ φµ τ= −  is the shadow price of the expenditure constraints on the y goods. If θ  is 
negative (positive), then expenditure on y is greater (less) than the optimal expenditure. They 
suggest that the inequalities can be checked by minimizing 2( )iF θ=∑  subject to (5) - (7). 
If a feasible solution to the minimization problem is found then y is weakly separable, with 
complete adjustment if 0F =  and with incomplete adjustment if 0F > . If there is no feasible 
solution then y is not weakly separable, even with incomplete adjustment. When using 
measurement error corrected quantities, ŷ  replaces y in (6). 

We propose a modification of the Swofford and Whitney (1994) test, which 
concentrates on an alternative measure of incomplete adjustment, 1/ /ψ θ τ φµ τ= = − . 
According to Swofford and Whitney (1994, p 244), ψ  represents the increment of utility from 

                                                 
2 Varian (1985), however, implemented the procedure for firm data with constraints based on the weak axiom of 
cost minimization (WACM). The constraints for WACM are linear, which reduces the computational burden.  



 

 4

spending an additional dollar on y relative to the marginal utility of an additional dollar of 
total expenditure. Since it is a ratio of marginal utilities, it is a cardinal measure and thus 
easier to interpret than θ, which is merely an ordinal measure.3 We therefore propose that 
weak separability is checked by minimizing, w.r.t. iU , iτ , iV , iµ  and iψ , the objective 
function 

2
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=

=∑ , (8) 

subject to (5) - (7) with φ replaced by (1 ) /ψ τ µ+ . Note that there is complete adjustment if 
and only if 0iψ =  i∀ . Useful measures of incomplete adjustment are therefore the maximum 
and average of the absolute values, 
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Large values of these measures may indicate implausible levels of incomplete adjustment.4 

3. An Empirical Illustration  
We programmed our procedure in FORTRAN 95 using the commercial solver FFSQP, which 
is documented in Zhou et al. (1997). The subroutines are available from the authors upon 
request.5 Although steps II and III are quite computationally burdensome, we were able to run 
all tests on standard PC's.  

We used our procedure on the dataset given in Swofford and Whitney (1994), who 
tested weak separability on the following two utility structures 6 

1 2 3 4 1 2 3( , , , , , , , , , , ( , ))U1 U NDUR SER LEIS SD SD SD SD STD STD STD V OM 1 OCD=  

1 2 3 1 2 3 4( , , , , , , ( , , , , , ))U 2 U NDUR SER LEIS STD STD STD V OM 1 OCD SD SD SD SD=  

They found it impossible to analyze the complete sample of 62 observations, which we call S, 
so they divided it into two overlapping periods of 40 observations; S1 and S2. They found no 
feasible solution in either sub-sample for U1, but found weak separability with incomplete 
adjustment for both sub-samples for U2.  

                                                 
3 Equations (10a) and (10b) in Swofford and Whitney (1994), show that ψ  can also be interpreted as the 
proportional deviation of the marginal rate of substitution from the relative price ratio when comparing a y good 
and a z good. 
4 The objective function is basically an artifact used for finding a solution to (5) - (7), and the choice of function 
is thus somewhat arbitrary. ψ  can of course be calculated even if we minimize the original objective function, 
but in this case we might well calculate a higher degree of incomplete adjustment than necessary. 
5 AEM Design made FFSQP available to us (as academics) free of charge, but we cannot distribute it to third 
parties. We tried to use the IMSL non-linear programming subroutines, but they were unable to handle problems 
with large numbers of constraints. Similar problems with these IMSL subroutines have been reported in the 
computer science literature. 
6 The notation stands for non-durables (NDUR), services (SER), leisure (LEIS), currency and demand deposits 
(OM1), other checkable deposits (OCD), four types of savings deposits (SDi) and three types of small denomina-
tion time deposits (STDi). 
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When we applied our three-step procedure, the data satisfied GARP in step I in all 
cases, and we could therefore proceed directly to step III without any measurement error 
correction. We ran step III using both the original Swofford-Whitney test and our 
modification of the test for comparison. Feasible solutions were obtained in all cases, 
indicating that neither structure can be rejected in any sample with incomplete adjustment. 7 

Table I: Measures of Incomplete Adjustment for Structures U1 and U2  

Swofford-Whitney Test Modified Test Structure, 
Sample Average (%) Maximum (%) Average (%) Maximum (%) 

U1,S1 0.000 0.000 0.013 0.169 

U2,S1 0.294 2.334 0.004 0.044 

U1,S2 22.270 152.430 7.141 85.167 

U2,S2 0.639 9.234 0.670 8.585 

U1,S 13.290 149.266 6.405 68.912 

U2,S 2.466 27.442 1.104 14.174 

Figure 1: | |iψ  from the Swofford-Whitney Test for U1 and U2 in the Whole Sample 
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In Table I we report the average and maximum amounts of incomplete adjustment, ψ  
and maxψ , as percentages. The time profile | |iψ  can also help point to particular events that 
are associated with violations of weak separability with complete adjustment, and an example 
is given in Figure 1. The incomplete adjustment from the modified test is very small for both 
structures in S1. The maximum amount of incomplete adjustment seems excessive for U1 in 
S2 (85% for the modified test). It is much lower for U2 but is still over 8% for S2 and over 

                                                 
7 Following Swofford and Whitney (1994), we determined if the solution was feasible by looking at the sum of 
constraint violations. These were of the order 10-15 or less in all cases. We obtained almost identical results 
using several reasonable methods to obtain starting values. The results presented in Table I mainly use the LP 
algorithm from Fleissig and Whitney (2003) to obtain start values for V and µ and Divisia indices to obtain start 
values for U and τ.  

 Original Modified



 

 6

14% using the full sample. Relative to the modified test, the Swofford-Whitney test tends to 
overstate the degree of incomplete adjustment, but tends to converge more quickly. 

In theory, complete adjustment is accepted if the objective function in Step III can be 
minimized to exactly zero. In practice, due to the convergence properties of any numerical 
optimization procedure, this condition can only be approximately satisfied. A practical 
solution is to check the dataset ( ,1 ), ( , ) : 1,...,( )/{ }i i i iv z V i Tµ =  for GARP, using the indices 
derived from the optimization in step III. If it passes, then weak separability with complete 
adjustment is accepted (Varian, 1983). Using this check, both U1 and U2 hold with complete 
adjustment in S1. Neither holds with complete adjustment for either S2 or S. If a dataset fails 
the check, we calculate the number of violations. Based upon the Swofford-Whitney test, the 
number of violations is 7 for U1 (S2 and S) and 2 for U2 (S2 and S). 

Our findings for U2 are very similar to Swofford and Whitney (1994), but are 
qualitatively different for U1. These differences are most likely explained by our use of an 
advanced commercial solver.  

In order to illustrate measurement error adjustment we use the following utility 
structure, (STD3 are deposits at credit unions, whose quantities are minimal) 

3 1 2 3 4 1 2( , , , , , , ( , , , , , ))U 3 U NDUR SER LEIS OM 1 OCD STD V SD SD SD SD STD STD= . 

We find stage I violations of GARP for both sub-samples using this structure, and it is 
therefore necessary to correct the data for measurement error. The results are given in the 
following table. 

Table II: Results for Structure U3  

Measures of Incomplete Adjustment 

Swofford-Whitney Test Modified Test Sample 
Stage I 
GARP 

Violations 

Measurement 
Error σ∗ 

(99% level) Average (%) Max (%) Average (%) Max (%) 

S1 5 0.0040 43.961 99.991 34.733 99.771 

S2 2 0.0007 19.607 83.994 8.333 60.131 

The data would have to be measured with a standard error of less than 0.40% in S1 and 
0.07% in S2 in order to reject the null hypothesis of GARP at the very conservative 99% 
significance level. The figures are 0.33% and 0.06% using a more standard 5% significance 
level. If one believes that the true measurement error variance is larger than these figures, it 
would be reasonable to test for weak separability using the measurement error corrected data. 
We ran the test in both sub-samples to illustrate the procedure. We found feasible solutions in 
both cases, but the levels of incomplete adjustment in Table II seem excessive. Based upon 
the Swofford-Whitney test, the number of violations with complete adjustment is 424 for S1 
and 178 for S2.  

4. Conclusions 
We propose a unified approach to testing weak separability, which synthesizes a joint test of 
necessary and sufficient conditions based on Swofford and Whitney (1994) with the 
measurement error approach proposed by Varian (1985).  



 

 7

The commonly used sequential procedure is based on an algorithm to construct Afriat 
indices for the group of goods or assets being tested. NONPAR uses one particular algorithm, 
while Fleissig and Whitney (2003) have recently proposed an alternative algorithm. The test 
based on the alternative algorithm performed well in their simulation study. However, since 
their "LP test" only uses sufficient conditions for weak separability, the intrinsic bias towards 
rejection remains. It also cannot account for incomplete adjustment or measurement error.  

The test procedure proposed in this paper is more general than the LP test but is also 
more computationally burdensome. We were, however, able to implement it on standard PC's 
with the help of the commercial solver, FFSQP. Based upon computational considerations, we 
recommend testing for weak separability, with data either corrected or uncorrected for 
measurement error, using the LP-test first. If weak separability with complete adjustment is 
rejected with the LP-test then continue with the original Swofford and Whitney test. If the 
results from this test marginally reject, with either complete or incomplete adjustment, then 
continue with the modified test.  

At the present time our procedure works well in medium sized samples, but may not be 
practical for datasets with extremely large sample sizes. As computing technology continues 
to advance, however, high-powered methods like the one we propose should supplant testing 
approaches that were originally designed to circumvent computational limitations. 

References 
Afriat, S. N. (1967) "The construction of a utility function from expenditure data" 
International Economic Review 8, 67-77. 

Barnett, W. A., and S. Choi (1989) "A Monte Carlo study of tests of blockwise weak 
separability" Journal of Business and Economic Statistics 7, 367-377. 

Fleissig, A. R, and G. A. Whitney (2003) "A new PC-based test for Varian's weak separability 
conditions" Journal of Business and Economic Statistics 21, 133-144. 

Manser, M. E., and R. J. McDonald (1988) "An analysis of substitution bias in measuring 
inflation, 1959-85" Econometrica 56, 909-930. 

Rickertsen, K. (1998) "The demand for food and beverages in Norway" Agricultural 
Economics 18, 89-100. 

Swofford J. L., and G. A. Whitney (1987) "Nonparametric tests of utility maximization and 
weak separability for consumption, leisure, and money" Review of Economics and Statistics 
69, 458-464. 

Swofford J. L., and G. A. Whitney (1994) "A revealed preference test for weakly separable 
utility maximization with incomplete adjustment" Journal of Econometrics 60, 235-249.  

Varian, H. (1982) "The nonparametric approach to demand analysis" Econometrica 50, 945-
974. 

Varian, H. (1983) "Non-parametric tests of consumer behaviour" Review of Economic Studies 
50, 99-110. 

Varian, H. (1985) "Non-parametric analysis of optimizing behavior with measurement error" 
Journal of Econometrics 30, 445-458. 

Zhou J. L., A. L. Tits, and C. T. Lawrence (1997) "User's guide for FFSQP version 3: A 
Fortran code for solving optimization programs, possibly minimax, with general inequality 
constraints and linear equality constraints, generating feasible iterates" Technical Report 



 

 8

SRC-TR-92-107r5, Institute for Systems Research, University of Maryland, College Park, 
MD 20742. Online at: http://64.238.116.66/aemdesign/FSQPframe.htm  


