
A robust definition of possibility for biseparable preferences 

Kin Chung Lo
Department of Economics, York University

Abstract

This note presents several preference-based definitions of a likely event, and shows that they
induce (in the sense of Lo 2005b) the same set of possible states for biseparable preferences.
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1. Introduction

According to the expected utility model of Savage (1954), and more generally the probabilis-
tic sophistication model of Machina and Schmeidler (1992, 1995), the beliefs of a decision
maker are represented by a probability measure. For any probabilistically sophisticated de-
cision maker confronted with a finite set of states of the world, it is standard to say that a
state of the world is possible if the decision maker assigns positive probability to that state.
In contrast, for models of preference without the probabilistic sophistication property, espe-
cially Choquet expected utility (Schmeidler 1989) and maxmin expected utility (Gilboa and
Schmeidler 1989), the issue of defining possibility has been controversial. Dow and Werlang
(1994) is an early paper raising the issue. Subsequently, Morris (1997), Ryan (2002) and
Lo (2005a) propose several preference-based definitions of a possible state; Lo (2005b) even
provides a recipe, which has the potential for generating different sets of possible states from
different definitions of a likely event.

As a concrete illustration of his recipe, Lo (2005b, Section 3) proposes a specific preference-
based definition of a likely event, and uses it to generate what he calls I-possible states. In-
terestingly, for the class of biseparable preferences (Ghirardato and Marinacci 2001), which
includes Choquet expected utility and maxmin expected utility as special cases, I-possibility
is equivalent to the notions of subjective possibility of Ryan (2002) and strict possibility of
Lo (2005a). Those equivalence results (established in Lo 2005a,b) suggest that there may
be at least a “robust” definition of possibility for biseparable preferences. The purpose of
this note is to provide further evidence. More precisely, we show that a couple of other
intuitive definitions of a likely event also induce the set of I-possible states. So, confining
to biseparable preferences, the issue of defining possibility may not be as controversial as it
first appeared.

2. Likely events and possible states

This section is a brief review of Lo (2005b). Let Ω be a finite set of states of the world, and
2Ω the set of events. Objects of choice are acts, where an act is a function from Ω to R. Let
� be a preference ordering over acts. Consider the following (indirect) approach of defining
a possible state. First, derive from � a subset L of 2Ω, which is interpreted as the collection
of likely events. Then possible states are induced from L as follows. (We use ⊆ for subset,
and ⊂ for strict subset. For any state ω ∈ Ω, ω also denotes the event {ω}.)

Definition 1. A state ω ∈ Ω is L-possible if there exists an event E ⊂ Ω such that E 6∈ L
and ω ∪ E ∈ L.

According to Definition 1, a state ω is L-possible if there exists an event E such that ω
has the following impact on E: E is not a likely event, but E with ω attached becomes a
likely event. As long as Ω is a likely event and ∅ is not, there exists at least one L-possible
state. If any superset of a likely event is also a likely event, then the set of all L-possible
states is equal to

∪{D|D ∈ minL}, (1)
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where

minL = {D|D ∈ L; and for all E ⊂ D, E 6∈ L}. (2)

In words, the set of L-possible states is the union of all minimal likely events. It follows that
if every element of minL is a singleton, then every L-possible state can be identified with a
likely event; on the other hand, if minL is a singleton, then L is closed under intersection,
and every element of L can be regarded as a believed event (in the sense of Morris 1997,
p. 220). In general, an event containing a L-possible state may not be a likely event, and a
likely event may not be a believed event.

Back to the derivation of L. Let � be the strict preference ordering corresponding to �.
For all D ⊆ Ω and for all x, y ∈ R, xDy denotes the binary act that yields the outcome x if
the event D happens, and the outcome y otherwise. The following preference-based notion
is defined and justified in Lo (1999).

Definition 2. For any D, E ⊆ Ω, D is infinitely more likely than E if for all x, y, z ∈ R with
x > y and z > y, xDy � zEy.

To elaborate, an event D is infinitely more likely than another event E if the decision
maker strictly prefers to bet on D rather than on E, and the strict preference persists no
matter how much bigger is the outcome for winning the E bet than that for winning the D
bet. With Definition 2, Lo (2005b) proposes

L = I ≡ {D|D is infinitely more likely than Ω \D}, (3)

where Ω \ D denotes the complement of D. Say that a state is I-possible if it satisfies
Definition 1, with L = I.

3. Equivalence results

Equation (3) leads us to consider the following obvious alternatives:

• I1 ≡ {D|D is infinitely more likely than ∅}.

• I2 ≡ {D|Ω is infinitely more likely than Ω \D}.

• I3 ≡ {D|Ω is not infinitely more likely than D}.

• I4 ≡ {D|Ω \D is not infinitely more likely than D}.

• I5 ≡ {D|Ω \D is not infinitely more likely than ∅}.

For every j = 1, . . . , 5, the notion of Ij-possibility is parallel to that of I-possibility; to be
exact, ω is Ij-possible if it satisfies Definition 1, with L = Ij.

A biseparable preference ordering gets its name from the following property: For any
x, x′, y, y′ ∈ R with x ≥ y and x′ ≥ y′, and any D, E ⊆ Ω, xDy � x′

Ey′ if and only if

ρ(D)u(x) + (1− ρ(D))u(y) ≥ ρ(E)u(x′) + (1− ρ(E))u(y′), (4)
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where u: R → R is continuous and strictly increasing, and ρ : 2Ω → [0, 1] is normalized and
monotone. In the literature, ρ is called a capacity (or nonadditive probability measure).
According to Equation (4), � is separable in binary acts; more precisely, a binary act is
evaluated according to its “expected utility,” where expectation is taken with respect to a
capacity in a rank dependent fashion.

We end this note with the following proposition, which establishes the equivalence of Ij-
possibility and I-possibility for biseparable preferences. Almost all the equivalence results
do not carry over to cumulative prospect theory (Tversky and Kahneman 1992) and lexico-
graphically biseparable preferences (Ryan 2002), which are two noticeable generalizations of
biseparable preferences.

Proposition. Suppose � is biseparable. Then for every j = 1, . . . , 5, a state is Ij-possible
if and only if it is I-possible.

Proof of Proposition. As � satisfies Equation (4), D is infinitely more likely than E if
and only if ρ(D) > 0 and ρ(E) = 0. Based on this observation, further observations can be
made. (In the sequel, min Ij is as defined in Equation (2), with L = Ij; similarly for min I.)

observation 1. D ∈ min I1 if and only if both Conditions A and B below are satisfied.

A. ρ(D) > 0.

B. For every E ⊂ D, ρ(E) = 0.

observation 2. D ∈ min I2 if and only if both Conditions A and B below are satisfied.

A. ρ(Ω \D) = 0.

B. For every E ⊂ D, ρ(Ω \ E) > 0.

observation 3. D ∈ min I3 if and only if both Conditions A and B below are satisfied.

A. ρ(D) > 0.

B. For every E ⊂ D, ρ(E) = 0.

observation 4. D ∈ min I4 if and only if both Conditions A and B below are satisfied.

A. ρ(D) > 0 or ρ(Ω \D) = 0.

B. For every E ⊂ D, ρ(E) = 0 and ρ(Ω \ E) > 0.

observation 5. D ∈ min I5 if and only if both Conditions A and B below are satisfied.

A. ρ(Ω \D) = 0.

B. For every E ⊂ D, ρ(Ω \ E) > 0.
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observation 6. D ∈ min I if and only if both Conditions A and B below are satisfied.

A. ρ(D) > 0 and ρ(Ω \D) = 0.

B. For every E ⊂ D, ρ(E) = 0 or ρ(Ω \ E) > 0.

The set of Ij-possible states can be derived using Equation (1), with L = Ij; likewise for
the set of I-possible states. We are now prepared to show that

• a state is I1-possible only if it is I4-possible. Fix any D ∈ min I1, and consider the
following two exhaustive cases.

case 1: Suppose ρ(ω ∪ [Ω \ D]) > 0 for every ω ∈ D. Then we can immediately
use Observations 1 and 4 to conclude that D ∈ min I4, and hence every ω ∈ D is
I4-possible. (Obviously, we rely on the fact that ρ is monotone; it is also the case in
various places below.)

case 2: Suppose there exists ω ∈ D such that

ρ(ω ∪ [Ω \D]) = 0. (5)

Equation (5) enables us to fix D∗ ⊂ D such that

ρ(Ω \D∗) = 0 (6)

and

ρ(Ω \ E) > 0 ∀E ⊂ D∗. (7)

By Observation 1, D ∈ min I1 and D∗ ⊂ D imply

ρ(E) = 0 ∀E ⊆ D∗. (8)

By Observation 4, Equations (6)–(8) imply D∗ ∈ min I4. For any ω ∈ D, if ω violates
Equation (5), then ω ∈ D∗; otherwise D∗ ⊂ D and ω 6∈ D∗ would imply ω ∪ [Ω \D] ⊆
Ω \ D∗, which can be combined with ρ(ω ∪ [Ω \ D]) > 0 to arrive at ρ(Ω \ D∗) > 0,
contradicting Equation (6). So any ω ∈ D violating Equation (5) is I4-possible. Next,
consider any ω ∈ D such that Equation (5) holds. By Observation 1, D ∈ min I1

implies

ρ(D) > 0 (9)

and

ρ(D \ ω) = 0. (10)

Equation (10) enables us to fix

D′ ⊆ ω ∪ [Ω \D] (11)
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such that

ρ(Ω \D′) = 0 (12)

and

ρ(Ω \ E) > 0 ∀E ⊂ D′. (13)

Equations (5) and (11) imply

ρ(D′) = 0. (14)

By Observation 4, Equations (12)–(14) imply D′ ∈ min I4. Finally, Equations (9), (11)
and (12) imply ω ∈ D′. This completes the proof that any ω satisfying Equation (5)
is also I4-possible.

• a state is I4-possible only if it is I-possible. Fix any D ∈ min I4. Condition A of
Observation 4 can be broken into three exhaustive cases.

case 1: Suppose ρ(D) > 0 and ρ(Ω \D) = 0. Then we can immediately use Observa-
tions 4 and 6 to conclude that D ∈ min I, and therefore every ω ∈ D is I-possible.

case 2: Suppose ρ(D) > 0 and ρ(Ω \D) > 0. Fix any ω ∈ D. By Observation 4,

ρ(D \ ω) = 0 and ρ(ω ∪ [Ω \D]) > 0. (15)

By Observation 6, Equation (15) implies that there exists D∗ ∈ min I such that

D∗ ⊆ ω ∪ [Ω \D]. (16)

If ω 6∈ D∗, then Equation (16) would imply D ⊆ Ω \D∗, which can be combined with
ρ(D) > 0 to arrive at ρ(Ω \ D∗) > 0, contradicting D∗ ∈ min I. So we must have
ω ∈ D∗, and therefore ω is I-possible.

case 3: Suppose ρ(D) = 0 and ρ(Ω \ D) = 0. As in Case 2 above, fix any ω ∈ D
and any D∗ ∈ min I satisfying Equation (16). If ω 6∈ D∗, then (16) would imply
D∗ ⊆ Ω \ D, which can be combined with ρ(Ω \ D) = 0 to arrive at ρ(D∗) = 0,
contradicting D∗ ∈ min I. So once again we must have ω ∈ D∗, and therefore ω is
I-possible.

• a state is I-possible only if it is I2-possible. Fix any D ∈ min I. Observations 2 and
6 allow us to fix D∗ ∈ min I2 such that D∗ ⊆ D. If D∗ = D, we can immediately
conclude that every ω ∈ D is I2-possible. Suppose that D∗ ⊂ D. Fix any ω such
that ω ∈ D and ω 6∈ D∗. Then ω ∪ [Ω \ D] ⊆ Ω \ D∗. Since D∗ ∈ min I2, we have
ρ(Ω \D∗) = 0, which can be combined with ω ∪ [Ω \D] ⊆ Ω \D∗ to arrive at

ρ(ω ∪ [Ω \D]) = 0. (17)

By Observation 6, D ∈ min I and Equation (17) imply

ρ(D \ ω) = 0. (18)
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By Observation 2, Equation (18) implies that there exists D′ ∈ min I2 such that

D′ ⊆ ω ∪ [Ω \D]. (19)

Since D ∈ min I, we have ρ(D) > 0. If ω 6∈ D′, then Equation (19) would imply
D ⊆ Ω \ D′, which can be combined with ρ(D) > 0 to arrive at ρ(Ω \ D′) > 0,
contradicting D′ ∈ min I2. So we must have ω ∈ D′ and thus ω is I2-possible.

• a state is I2-possible only if it is I1-possible. Fix any D ∈ min I2 and any ω ∈ D.
According to Observation 2,

ρ(ω ∪ [Ω \D]) > 0. (20)

By Observation 1, Equation (20) implies that there exists D∗ ∈ min I1 such that

D∗ ⊆ ω ∪ [Ω \D]. (21)

Since D ∈ min I2, we have ρ(Ω \D) = 0. If ω 6∈ D∗, then Equation (21) would imply
D∗ ⊆ Ω \ D, which can be combined with ρ(Ω \ D) = 0 to arrive at ρ(D∗) = 0,
contradicting D∗ ∈ min I1. So we must have ω ∈ D∗ and thus ω is I1-possible.1

• a state is I1-possible if and only if it is I3-possible. This follows immediately from
Observations 1 and 3.

• a state is I2-possible if and only if it is I5-possible. This follows immediately from
Observations 2 and 5.
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