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Abstract

This paper proposes a simple procedure to decide whether the empirically-observed
adjacency or weights matrix, which characterizes the graph underlying a socio-economic
network, is sufficiently symmetric (respectively, asymmetric) to justify an undirected
(respectively, directed) network analysis. We introduce a new index that satisfies two main
properties. First, it can be applied to both binary or weighted graphs. Second, once suitably
standardized, it distributes as a standard normal over all possible adjacency/weights matrices.
To test the index in practice, we present an application that employs a set of well-known
empirically-observed social and economic networks.
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1. Introduction

In the last years, the literature on networks has been characterized by exponential growth.
Empirical and theoretical contributions in very diverse fields such as physics, sociology,
economics, etc. have increasingly highlighted the pervasiveness of networked structures.
Examples range from WWW, the Internet, airline connections, scientific collaborations and
citations, trade and labor market contacts, friendship and other social relationships, business
relations and R&S partnerships, all the way through cellular, ecological and neural networks
(Albert and Barabási, 2002; Newman, 2003; Wasserman and Faust, 1994; Carrington, Scott,
and Wasserman, 2005).

The empirical research has thoroughly studied the (often complex) topological properties
of such networks, whereas a large number of theoretical models has been proposed in order to
investigate how networks evolve through time (Dorogovtsev and Mendes, 2003). Structural
properties of networks have been shown to heavily impact on the dynamics of the socio-
economic systems that they embed (Watts, 1999). As a result, their understanding has
become crucial also as far as policy implications are concerned (Granovetter, 1974).

The simplest mathematical description of a network is in terms of a graph, that is a
list of nodes {1, 2, ..., N} and a set of arrows (links), possibly connecting any two nodes
(Harary, 1969; Bollobás, 1985). Alternatively, one can characterize a network through a
N ×N real-valued matrix W = {wij}, where any out-of-diagonal entry wij is non-zero if and
only if an arrow from node i to j exists in the network. Entries on the main diagonal are
typically assumed to be all different from zero (if self-interactions are allowed) or all equal
to zero (if they are not). Networks are distinguished in binary (dichotomous) or weighted.
In binary networks all links carry the same intensity. This means that in binary networks
a link is either present or not, i.e. wij ∈ {0, 1}. In this case, W is called an “adjacency”
matrix. Weighted networks allow one instead to associate a weight (i.e. a positive real
number) to each link, typically proportional to its interaction strength or the flux intensity
it carries (Barrat, Barthélemy, Pastor-Satorras, and Vespignani, 2004; Barrat, Barthélemy,
and Vespignani, 2005; Barthélemy, Barrat, Pastor-Satorras, and Vespignani, 2005; DeMontis,
Barthélemy, Chessa, and Vespignani, 2005). Any non-zero entry wij thus measures the weight
of the link originating from i and ending up in j, and the resulting matrix W is called the
“weights” matrix 1.

Both binary and weighted networks can be undirected or directed. Formally, a network is
undirected if all links are bilateral, i.e. wijwji > 0 for all i 6= j. This means that in undirected
networks all pairs of connected nodes mutually affect each other. One can thus replace
arrows with non-directed edges (or arcs) connecting any two nodes and forget about the
implicit directions. This greatly simplifies the analysis, as the tools for studying undirected
networks are much better developed and understood. Directed networks are instead not
symmetric, as there exists at least a pair of connected nodes wherein one directed link is not
reciprocated, i.e. ∃(i, j), i 6= j : wij > 0, but wji = 0. Studying the topological properties
of directed networks, especially in the weighted case, can become more difficult, as one has
to distinguish inward from outward links in computing synthetic indices such as node and

1In what follows, we will stick to the case wij ∈ [0, 1], all i, j (the more general case wij ∈ R+ can be
reduced to the former simply by dividing all weights by their maximum level in W ).
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average nearest-neighbor degree and strength, clustering coefficient, etc.. Therefore, it is not
surprising that the properties of such indices are much less explored in the literature.

From a theoretic perspective, it is easy to distinguish undirected from directed networks:
the network is undirected if and only if the matrix W is symmetric. When it comes to the
empirics, however, researchers often face the following problem. If the empirical network
concerns an intrinsically mutual social or economic relationship (e.g. friendship, marriage,
business partnerships, etc.) then W , as estimated by the data collected, is straightforwardly
symmetric and only tools designed for undirected network analysis are to be employed. More
generally, however, one deals with notionally non-mutual relationships, possibly entailing
directed networks. In that case, data usually allow to build a matrix W that, especially in
the weighted case, is hardly found to be symmetric. Strictly speaking, one should treat all
such networks as directed. This often implies a more complicated and convoluted analysis
and, frequently, less clear-cut results. The alternative, typically employed by practitioners in
the field, is to compute the ratio of the number of directed (bilateral) links actually present
in the networks to the maximum number of possible directed links (i.e. N(N − 1)). If this
ratio is “reasonably” large, then one can symmetrize the network (i.e., making it undirected:
see Wasserman and Faust, 1994; De Nooy, Mrvar, and Batagelj, 2005) and apply the relevant
undirected network toolbox (for alternative techniques, cf. Garlaschelli and Loffredo, 2004,
2005).

This procedure has an important drawback. If the network is weighted, the ratio of
bilateral links does not take into account the effect of link weights. Indeed, a bilateral
link exists between i and j if and only if wijwji > 0, i.e. irrespective of the actual size
of the two weights. Of course, as far as symmetry of W is concerned, the sub-case where
wij >> 0, wji ≃ 0 will be very different from the sub-case where wij ≃ wji > 0.

In this paper, we present a simple procedure that tries to overcome this problem. More
specifically, we develop a simple index that can help in deciding when the empirically-
observed W is sufficiently symmetric to justify an undirected network analysis. Our index
has two main properties. First, it can be applied with minor modifications to both binary
and weighted networks. Second, the standardized version of the index distributes as a stan-
dard normal (over all possible matrices W ). Therefore, after having set a threshold x, one
might conclude that the network is to be treated as if it is undirected if the index computed
on W is lower than x.

Of course, the procedure that we propose in the paper is by no means a statistical test for
the null hypothesis that W involves some kind of symmetry. Indeed, one has almost always
to rely on a single observation for W (more on that in Section 5). Nevertheless, we believe
that the index studied here could possibly provide a simple way to ground the “directed vs.
undirected” decision on more solid bases.

The paper is organized as follows. In Section 2 we define the index and we derive its
basic properties. Section 3 discusses its statistical properties, while in Section 4 we apply
the procedure to the empirical networks extensively studied in Wasserman and Faust (1994).
Finally, Section 5 concludes.

2. Definition and Basic Properties

Consider a directed, weighted, graph G̃ = (N, Ã), where N is the number of nodes and

2



A = {ãij} is the N ×N (real-valued) matrix of link “weights” (Barrat, Barthélemy, Pastor-
Satorras, and Vespignani, 2004; Barthélemy, Barrat, Pastor-Satorras, and Vespignani, 2005;
Barrat, Barthélemy, and Vespignani, 2005; DeMontis, Barthélemy, Chessa, and Vespignani,
2005). Without loss of generality, we can assume ãij ∈ [0, 1],∀i 6= j and ãii = ã ∈
{0, 1}, i, j = 1, . . . N 2. In line with social network analysis, we interpret the generic out-of-
diagonal entry ãij, i 6= j, as the weight associated to the directed link originating from node
i and ending up in node j (i.e., the strength of the directed link i → j in the graph). A
directed edge from i to j is present if and only if ãij > 0.

The idea underlying the construction of the index is very simple. If the graph G̃ is
undirected, then Ã = ÃT , where ÃT is the transpose of Ã. Denoting by ‖ · ‖ any norm
defined on a square-matrix, the extent to which directionality of links counts in the graph
G̃ can therefore be measured by some increasing function of ‖Ã− ÃT‖, suitably rescaled by

some increasing function of ‖Ã‖ (and possibly of ‖ÃT‖).
To build the index we first define, again without loss of generality:

A = {aij} = Ã − (1 − ã)IN , (1)

where IN is the N×N identity matrix. Accordingly, we define the graph G = (N,A). Notice
that aij = ãij for all i 6= j, while now aii = 1 for all i.

Consider then the square of the Frobenius (or Hilbert-Schmidt) norm:

‖A‖2

F =
∑

i

∑

j

a2

ij = N +
∑

i

∑

j 6=i

a2

ij, (2)

where all sums (also in what follows) span from 1 to N . Notice that ‖A‖2
F is invariant with

respect to the transpose operator, i.e. ‖A‖F = ‖AT‖F .
We thus propose the following index:

S̃(A) =
‖A − AT‖2

F

‖A‖2
F + ‖AT‖2

F

=
‖A − AT‖2

F

2‖A‖2
F

=
1

2

[‖A − AT‖F

‖A‖F

]2

. (3)

By exploiting the symmetry of (aij − aji)
2, one easily gets:

S̃(A) =

∑
i

∑
j (aij − aji)

2

2
∑

i

∑
j a2

ij

=

∑
i

∑
j>i (aij − aji)

2

N +
∑

i

∑
j 6=i a

2
ij

. (4)

Alternatively, by expanding the squared term at the numerator, we obtain:

S̃(A) = 1 −
∑

i

∑
j aijaji∑

i

∑
j a2

ij

= 1 −
N +

∑
i

∑
j 6=i aijaji

N +
∑

i

∑
j 6=i a

2
ij

= (5)

= 1 −
N + 2

∑
i

∑
j>i aijaji

N +
∑

i

∑
j 6=i a

2
ij

=

∑
i

∑
j 6=i a

2
ij − 2

∑
i

∑
j>i aijaji

N +
∑

i

∑
j 6=i a

2
ij

. (6)

2We assume that entries in the main diagonal are either all equal to zero (ã = 0, i = 1, . . . N , i.e. no
self-interactions) or all equal to one (ã = 1, i = 1, . . . N , i.e. self-interactions are allowed).
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The index S̃(A) has a few interesting properties, which we summarize in the following:

Lemma 1 (General properties of S̃) For all real-valued N × N matrices A = {aij} s.t.
aij ∈ [0, 1], i 6= j and aii = 1, i = 1, ..., N , then:

(1) S̃(A) ≥ 0.

(2) S̃(A) = 0 ⇔ A = AT , i.e. if and only if the graph is undirected.

(3) S̃(A) ≤ N−1

N+1

Proof. See Appendix A.

Furthermore, when G is binary (i.e., aij ∈ {0, 1} for all i, j), the index in eq. 3 turns
out to be closely connected to the density of the graph (i.e., the ratio between the total
number of directed links to the maximum possible number of directed links) and the ratio
of the number of bilateral directed links in G (i.e. links from i to j s.t. aij = aji = 1) to the
maximum possible number of directed links. More precisely:

Lemma 2 (Properties of S̃ in the case of binary graphs) When G is binary, i.e. aij ∈
{0, 1}, all i, j, then:

S̃(A) =
d(A) − b(A)

(N − 1)−1 + d(A)
. (7)

where d(A) is the density of G and b(A) is the ratio between the number of bilateral directed
links to the maximum number of directed links.

Proof. See Appendix B.

Notice that, in the case of undirected graphs, b(A) = d(A) and S̃(A) = 0. On the

contrary, when there are no bilateral links, b(A) = 0. Hence, S̃(A) = [d(A)/(N − 1) + 1]−1,

which is maximized when d(A) = 1

2
, i.e. S̃(A) = N−1

N+1
, as shown in Lemma 1. Obviously, the

larger b(A), the more the graph G is undirected. As mentioned in Section 1, b(A) can be
employed to check for the extent to which directionality counts in G. However, such index
is not very useful in weighted graphs, as it does not take into account the size effect (i.e. the
size of weights as measured by aij ∈ [0, 1]).

Since S̃(A) ∈ [0, N−1

N+1
], in what follows we shall employ its rescaled version:

S(A) =
N + 1

N − 1
S̃(A), (8)

which ranges in the unit interval and thus has a more straightforward interpretation.
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3. Statistical Properties

In this section we study the distribution of the index S as defined in eqs. 3 and 8. Indeed,
despite the range of S does not depend on N , we expect its distribution to be affected by:
(i) the size of the matrix (N); (ii) whether the underlying graph G is binary (aij ∈ {0, 1})
or weighted (aij ∈ [0, 1]).

To do so, for each N ∈ {5, 10, 50, 100, 200, 500, 700, 1000} we generate M = 100, 000
random matrices A obeying the restriction that aii = 1, all i. In the binary case, out-
of-diagonal entries {aij, i 6= j} are drawn from i.i.d. Bernoulli random variables with
prob{aij = 0} = prob{aij = 1} = 0.5. In the weighted case, entries aij are i.i.d. ran-
dom variables uniformly-distributed over [0, 1]. We then estimate the distributions of S in
both the binary and the weighted cases, and we study their behavior as the size of the graph
increases. Let us denote by mB(N) (respectively, mW (N)) the sample mean of the index S
in the binary (respectively, weighted) case, and by sB(N) (respectively, sW (N)) the sample
standard deviation of the index S in the binary (respectively, weighted) case. Simulation
results are summarized in the following points.

1. In both the binary and the weighted case, the index S approximately distributes as
a Beta random variable for all N . As N increases, mB(N) decreases towards 0.50
whereas mW (N) increases towards 0.25. Both standard deviations decrease towards 0.
More precisely, the following approximate relations hold (see Figures 1 and 2):

mB(N) ≃ 0.50 + exp{−1.786369 − 1.680938lnN} (9)

mW (N) ≃ 0.25 − exp{−1.767551 − 0.937586lnN} (10)

sB(N) ≃ exp{−0.135458 − 1.001695lnN} (11)

sW (N) ≃ exp{−0.913297 − 0.982570lnN} (12)

2. Given the approximate relations in eqs. 9-12, let us standardize the index S as follows:

SB(A) =
S(A) − mB(N)

sB(N)
, (13)

SW (A) =
S(A) − mW (N)

sW (N)
. (14)

Simulations indicate that the standardized versions of the index, i.e. SB and SW , are
both well approximated by a N(0, 1), even for small Ns (N ≥ 10). Indeed, as Figures
3 and 4 show, the mean of the distributions of SB and SW vs. N converges towards
zero, while the standard deviation approaches one (we actually plot standard deviation
minus one to have a plot in the same scale). Also the third (skewness) and the fourth
moment (excess kurtosis) stay close to zero. We also plot the estimated distribution
of SB and SW vs. N , see Figures 5 and 6. It can be seen that all estimated densities
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collapse towards a N(0, 1). Notice that the y-axis is in log scale: this allows one to
appreciate how close to a N(0, 1) are the distributions for all N on the tails.

Notice finally that as N increases, the distribution maintains a constant second moment
but the range increases linearly with N , see 7 and 8. The lower bound (LB) and the
upper bound (UB) indeed read approximately:

LB∗(N) =≃ −m∗(N)

s∗(N)
, UB∗(N) =≃ 1 − m∗(N)

s∗(N)
(15)

where {∗} = {B,W} stands for binary (B) and weighted (W). Since the standardized
index is well approximated by a N(0, 1) for all N , this means that extreme values
become more and more unlikely. This is intuitive, because as N grows the number of
matrices with highest/lowest values of the index are very rare.

4. Examples

The index developed above can be easily employed to assess the extent to which link direc-
tionality matters in real-world networks. Let us suppose to have estimated a N ×N matrix
X = {xij} describing a binary (B) or a weighted (W) graph. We then compute the index:

S∗(X) =
N+1

N−1
S̃(X) − m∗(N)

s∗(N)
= (16)

=
1

s∗(N)

[
N + 1

N − 1

∑
i

∑
j>i (xij − xji)

2

N +
∑

i

∑
j 6=i x

2
ij

− m∗(N)

]
. (17)

where {∗} = {B,W} and (m∗(N), s∗(N)) are as in eqs. 9-12. Since we know that S∗(X) is
approximately N(0, 1), we can fix a lower threshold in order to decide whether the network is
sufficiently (un)directed. For instance, we could set the lower threshold equal to 0 (i.e. equal
to the mean), and decide that if S∗(X) > 0 (above the mean) we shall treat the network
as directed (and undirected otherwise). More generally, one might set a threshold equal to
x ∈ R and conclude that the graph is undirected if S∗ < x. On the contrary, one should
expect the directional nature of the graph to be sufficiently strong, so that a digraph analysis
is called for.

To test the index against real-world cases, we have taken the thirteen social and economic
networks analyzed in Wasserman and Faust (1994), see Table 1 3. All networks are binary and
directed, apart from Freeman’s ones (which are weighted and directed) and Padgett’s ones
(which are binary and undirected). Table 1 reports both the index S and its standardized
versions S∗, {∗} = {B,W}, for all cited examples.

3They concern advice, friendship and “reports-to” relations among Krackhardt’s high-tech managers;
business and marital relationships between Padgett’s Florentine families; acquaintanceship among Free-
man’s EIES researchers and messages sent between them; and data about trade flows among countries (cf.
Wasserman and Faust, 1994, ch. 2.5 for a thorough description).
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Suppose to fix the lower threshold equal to zero. Padgett’s networks, being undirected,
display a very low value (in fact, the non standardized index is equal to zero as expected).
The table also suggests to treat all the binary trade networks as undirected. The same advice
applies for Freeman’s networks, which are instead weighted. The only networks which have
an almost clear directed nature (according to our threshold) are Krackhardt’s ones. In that
case our index indicates that a directed graph analysis would be more appropriate.

5. Concluding Remarks

In this paper we have proposed a new procedure that might help to decide whether an
empirically-observed adjacency or weights N×N matrix W , describing the graph underlying
a social or economic network, is sufficiently symmetric to justify an undirected network
analysis. The index that we have developed has two main properties. First, it can be applied
to both binary or weighted graphs. Second, once suitably standardized, it distributes as a
standard normal over all possible adjacency/weights matrices. Therefore, given a threshold
decided by the researcher, any empirically observed adjacency/weights matrix displaying a
value of the index lower (respectively, higher) than the threshold is to be treated as if it
characterizes an undirected (respectively, directed) network.

It must be noticed that setting the threshold always relies on a personal choice, as also
happens in statistical hypothesis tests with the choice of the significance level α. Despite
this unavoidable degree of freedom, the procedure proposed above still allows for a sufficient
comparability among results coming from different studies (i.e. where researchers set different
threshold) if both the value of the index S and the size of the network are documented in
the analysis. In that case, one can easily compute the probability of finding a matrix with a
lower/higher degree of symmetry, simply by using the definition of bounds (see eq. 15) and
probability tables for the standard normal.

A final remark is in order. As mentioned, our procedure does not configure itself as
a statistical test. Since the researcher often relies on a single observation of the network
under study (or a sequence of serially-correlated network snapshots through time), statistical
hypothesis testing will be only very rarely feasible. Nevertheless, in the case where a sample
of M i.i.d. observations of W is available, one might consider to use the the sample average
of the index (multiplied by

√
M) and employ the cental limit theorem to test the hypothesis

that the observations come from a undirected (random) graph.
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Appendices

A. Proof of Lemma 1

Points (1) and (2) simply follow from the definition in eq. 3. As to (3), let us suppose that

there exists a matrix A satisfying the above restrictions and such that S̃(A) > N−1

N+1
. Then,

using eq. 6:

N + 2
∑

i

∑
j>i aijaji

N +
∑

i

∑
j 6=i a

2
ij

<
2

N + 1
. (18)

The best case for such an inequality to be satisfied is when the the left hand side is minimized.
This is achieved when there are N(N − 1)/2 entries equal to one and N(N − 1)/2 entries
equal to zero in such a way that aij 6= aji for all i 6= j (e.g., when the upper diagonal matrix
is made of all ones and the lower diagonal matrix is made of all zeroes). In that case the left
hand side is exactly equal to 2

N+1
, leading to the absurd conclusion that 2

N+1
< 2

N+1
.

B. Proof of Lemma 2

It follows from the definition of d(A) that:

d(A) =

∑
i

∑
j 6=i aij

N(N − 1)
=

∑
i

∑
j 6=i a

2
ij

N(N − 1)
, (19)

Moreover, it is easy to see that:

b(A) =

∑
i

∑
j 6=i aijaji

N(N − 1)
=

2
∑

i

∑
j>i aijaji

N(N − 1)
. (20)

To prove the Lemma, it suffices to note that:

S̃(A) = 1 −
N + 2

∑
i

∑
j>i aijaji

N +
∑

i

∑
j 6=i a

2
ij

= (21)

= 1 − 1 + (N − 1)b(A)

1 + (N − 1)d(A)
=

d(A) − b(A)

(N − 1)−1 + d(A)
. (22)
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Figure 5: Binary Graphs. Estimated dis-
tribution of SB vs. N . The N(0, 1) fit is
also shown as a solid line.
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Figure 6: Weighted Graphs. Estimated
distribution of SW vs. N . The N(0, 1) fit
is also shown as a solid line.

Upper_Bound = 0.579307*N - 0.195911

R2 = 1.000000

Lower_Bound = -0.579232*N + 0.137288

R2 = 1.000000
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Figure 7: Binary Graphs. Lower and up-
per bounds of the re-scaled index SB vs.
N , together with the OLS fit.
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Figure 8: Weighted Graphs. Lower and
upper bounds of the re-scaled index SW

vs. N , together with the OLS fit.
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Social Network N S S∗

1 Advice relations btw Krackhardt’s hi-tech managers 21 0.521327 0.491228
2 Friendship relations btw Krackhardt’s hi-tech managers 21 0.500813 0.004610
3 “Reports-to” relations btw Krackhardt’s hi-tech managers 21 0.536585 0.860033
4 Business relationships btw Padgett’s Florentine families 16 0.000000 -9.232823
5 Marital relationships btw Padgett’s Florentine families 16 0.000000 -9.232823
6 Acquaintanceship among Freeman’s EIES researchers (Time 1) 32 0.109849 -10.025880
7 Acquaintanceship among Freeman’s EIES researchers (Time 2) 32 0.094968 -11.143250
8 Messages sent among Freeman’s EIES researchers 32 0.014548 -17.181580
9 Country Trade Flows: Basic Manufactured Goods 24 0.260349 -6.643695

10 Country Trade Flows: Food and Live Animals 24 0.311966 -5.217508
11 Country Trade Flows: Crude Materials (excl. Food) 24 0.272560 -6.306300
12 Country Trade Flows: Minerals, Fuels, Petroleum 24 0.403336 -2.692973
13 Country Trade Flows: Exchange of Diplomats 24 0.080208 -11.620970

Table 1: The index S and its standardized version S{∗}, {∗} = {B(inary),W (eigthed)} for
social networks studied in Wasserman and Faust (1994), cf. Chapter 2.5.

12


