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Abstract

This paper develops a simple bivariate count data regression model in which dependence
between count variables is introduced by means of stochastically related unobserved
heterogeneity components. Unlike existing commonly used bivariate models, we obtain a
computationally simple closed form of the model with an unrestricted correlation pattern. An
application to Medicaid utilization is provided.
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1 Introduction

Bivariate count data regressions arise in situations where two dependent
counts are correlated and joint estimation is required mainly due to efficiency
considerations. For example, common measures of health-care utilization,
such as the number of doctor consultations and the number of other am-
bulatory visits, are likely to be jointly dependent. Other leading examples
include the number of voluntary and involuntary job changes, the number
of firms which enter and exit an industry, and the number of patents granted
to and papers published by scientists.

Existing commonly used count models accommodate only non-negative
correlation between the counts (Mayer and Chappell 1992, Gurmu and Elder
2000, and Wang 2003). The statistics literature gives examples and general
techniques on constructing negatively correlated multivariate Poisson distri-
butions having Poisson marginals. In particular, Aitchison and Ho (1989)
consider a log-normal mixture of independent Poisson distributions. Since
the resulting mixture, the Poisson-log normal distribution, does not have a
closed form solution, estimation of the model requires numerical integration
(Munkin and Trivedi 1999 and Hellstrom 2006).

In this paper, we develop a simple bivariate count regression model in
which dependence between count variables is introduced by means of sto-
chastically related unobserved heterogeneity components. The proposed bi-
variate Poisson mixture model is based on the first-order series expansion for
the unknown joint density of the unobserved heterogeneity components. Un-
like existing commonly used bivariate models, we obtain a computationally
simple closed form of the model with an unrestricted correlation pattern. We
also provide an extension to truncated models. An application to Medicaid
utilization is provided.

2 The framework

This section provides the basic framework for two-factor mixture models in
which dependence between count variables is introduced through correlated
unobserved heterogeneity components. Consider two jointly distributed
random variables, Y; and Y5, each denoting event counts. For observation
i (i=1,2,..,N), we observe {yji,x]‘i}?:l, where z;; is a (k; x 1) vector of
covariates. Without loss of generality, the mean parameter associated with



y;i can be parameterized as

0;: = exp(z);0;), j=1,2 (1)
where (3; is a (k; x 1) vector of unknown parameters. We model the depen-
dence between y; and y, by means of correlated unobserved heterogeneity
components v, and vs. Each of the components is associated with only
one of the event counts. Accordingly, for j = 1,2, suppose (y;; | ©ji, vj;) ~
Poisson(0;;v;) with (v1;, v2;) having a bivariate distribution g(v1;, vo;) in R2.
Then the ensuing mixture density can be expressed as

<y127y21, | xz //

Let M(—6y;,—02) = E, [exp (—01;v1; — O9;v9;)] denote the bivariate moment
generating function (MGF) of (vy;,v9;) evaluated at (—6y;, —02). It can
readily be seen that (2) takes the form
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where, suppressing i, M ®¥2) (—0;, —0y) = 0% M (—01, —05) / (O(—6,)¥:0(—05)2)
is the derivative of M (—601,—65) of order y. = y; + yo.

The sign of the correlation coefficient between y; and ys is determined by
the sign of the covariance between the two unobserved variables, cov(vy, v3).
In the case of univariate mixing, the correlation between the counts is affected
only by the variance of the common unobserved heterogeneity term. Hence,
correlation is non-negative. In the bivariate mixing, the variance of each
unobserved component as well as the correlation between the components
affect corr(y1;, y2; | ;). Hence, the sign of this correlation is unrestricted.

The form of the density (3) depends upon the choice of the distribution
of the unobservables, g(v1;,v9;). If g(.) follows a bivariate (or generally
multivariate) log-normal distribution, we get the bivariate (or multivariate)
Poisson log-normal distribution proposed by Aitchison and Ho (1989). The
computational difficulty with the Poisson log-normal mixture arises from the
unavailability of the MGF of the log-normal distribution. Hence, evaluation
of Mwry2) (—01;, —02;) and estimation of the model require numerical inte-
gration.  For example, Munkin and Trivedi (1999) study the Poisson log-
normal correlated model using the simulated maximum likelihood estimation
method, while Hellstrom (2006) uses Markov chain Monte Carlo Methods.
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3 A general bivariate model

We obtain a closed form for a mixture model of the type given in (3), while
at the same time allowing for both positive and negative correlations. The
proposed simple mixture model is based on first-degree Laguerre polynomial
expansion of the bivariate distribution of unobserved heterogeneity, where
the leading term is the product of gamma densities. The proposed density
for (vy;,v9;) 1is

w(Vli)w(V2i) 2
i V2i) = ————5~— (L + pr Pr(vi) Pr(va)|”, 4
9(V15,v2) 0+ 2 [L+ p11 Pr(vii) Pr(va:)] (4)
where, for j =1, 2,
’ ['(ay)

are the baseline gamma weights,

Aj
Ples) = (v - S )
are the first-order polynomials each with unit variance, and p;; is an un-
known correlation parameter; p;; = corr(P;(v1), Pi(v2)). The polynomials
in (4) are squared to ensure non-negativity of the density.

The mixture density in (2) can now be derived using specification (4).
After some algebra, we obtain the following bivariate density for the counts:
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where
Aj= 1+p1 laj + pii (g +2)], j=1,2 (8)
and

v = 1+p [1 + 2p1y/oaas (1 —ny;) (1 —ng) +
P11041042 (1= 2my; +11,C1) (1 — 2n9; +19:Ca1)]

)
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with n;;, = —yji;;aj (1 + %) and (;; = —yj’zl;raj (1 + %) for j = 1,2.
J

The bivariate density in (7) can also be expressed in the general form (3).



This is achieved by replacing M®¥2) — ;) in (3) with
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The alternative representation of the approximated density is useful in ob-
taining the moments of the model. As in the univariate Poisson mix-
ture model, we have set the mean of each unobserved heterogeneity to
unity.  This imposes restriction on \; given in (8). The unknown pa-
rameters, ¢ = (0, 04, 1, 2, p11), can then be obtained by maximizing the
log-likelihood function, Zfil log f (Y14, Yo2i | ;). The mixture model based on
(7) is called the bivariate Poisson-Laguerre polynomial (BIVARPL) model.
It can be thought of as a mixture of Poisson and a variant of a bivariate
gamma distribution.!

Interest lies in lower order conditional moments of the BIVARPL, in-
cluding the conditional correlation between y; and y,. For the BIVARPL
model, since Mean(y;; | z;) = 6j;, the marginal effects of a certain ex-
planatory variable, say u;, on the expected number of counts (e.g., trips) is
ME, = 0;; X 8;,, Jj = 1,2. Finite difference method can be used for discrete
regressors. The correlation coefficient for the BIVARPL model is:
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where
MED(0,0) = [ar02 + 2pnv/aias + pfy (00 + 2) (a2 +2)] ke, (12)
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and for Méo’m (0,0), we replace a; and A; in the preceding equation by
az and )y, respectively. Note that, for example, Var(yy; | =;) = 61 +

03, [M,?’O) (0,0) — 1] in (11). The conditional correlation can take on zero,

'For computational simplicity, this paper focuses on bivariate models with only first-
order expansion. Higher order polynomial expansions, say of order K, can be considered
(Gurmu and Elder 2006).



positive or negative values. When the correlation parameter p;; = 0 in
(7), we get a density that is a product of two independent negative binomial
distributions.

The above analysis can be extended to the estimation of truncated and
censored models. We focus on the empirically relevant case, the zero- trun-
cated model, where the zero class is missing for both dependent variables so
that y;; = 1,2,3,... for j = 1,2. The zero-truncated bivariate distribution
takes the form

f(y1,92; )

¢ Y
where ¢ is a parameter vector, ¢ = > . f(y1,42;0), and S* is a set of
positive integers in 32, The normalization constant can be derived as

¢ =1—flyr=0) = f(y2=0) + f(yr = 0,52 = 0), (14)

where, for example, f(y; =0) = f(y1 =0, y» > 0) and
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The approach can easily be extended to the case where only a single-variable
is truncated at zero. For example, if only y; is truncated at zero, then

¢p=1~— f(y; =0).

4 An application

Using bivariate regressions, we model the number of doctor and other am-
bulatory visits during a period of four months based on data from the 1986
Medicaid Consumer Survey. The survey was part of the data collection
activity of the Nationwide Evaluation of Medicaid Competition Demonstra-
tions. This paper focuses on data obtained from two sites in California, and
originally analyzed by Gurmu (1997) using univariate models. The California
survey was conducted in personal interviews with samples of demonstration
enrollees in Santa Barbara county and a fee-for-service comparison group of
nonenrollees from nearby Ventura county. A stratified random sample of
individuals qualifying for Aid to Families with Dependent Children was ob-
tained in 1986. The sample size is 243 for enrollees, and 242 for nonenrollees.



An important feature of the data set is that enrollment in the programs was
mandatory for all Medicaid beneficiaries.

The dependent variables are (1) the number of doctor office and clinic
visits (Doctor) and (2) the number of other ambulatory visits, including
hospital clinic, outpatient, health center, and home visits (Ambulatory), both
observed over a period of four months. The explanatory variables include the
number of children in the household, age of the respondent in years, annual
household income, dummy variables for race and marital status, years of
schooling, access to health services, and measures of health status. Three
of the health related variables, functional limitations, chronic conditions,
and acute conditions, are highly correlated. Accordingly, the first two of
the principal components (called PC1 and PC2) are used as explanatory
variables. The first principal component accounts for 68.5% of the variation,
and is positively correlated with each of the health related variables. Thus,
one would expect the first principal component to have a positive impact on
health care utilization.

The two count variables are negatively correlated, with the sample cor-
relation of -0.044. Most of the observed joint frequencies for (Doctor, Am-
bulatory) visits are at cells : (0, 0), (0, y2), and (y1, 0). The counts are
characterized by relatively high proportion of nonusers; 61.9% for doctor vis-
its and 73.8% for other ambulatory visits. In each case, about 10% of the
respondents have 4 or more visits during the reporting period. As com-
pared to nonenrollees, the means of both utilization variables are lower for
enrollees.

Table 1 presents parameter estimates from two bivariate models. All
t-ratios are based on heteroscedasticity-robust standard errors. Fore com-
parison, the estimates from the bivariate negative binomial model, which re-
strict correlations to be positive, are also included. The BIVARPL model
dominates the bivariate negative binomial model in terms of the Akaike in-
formation criterion (AIC). The main health status variable PC1 has a highly
significant positive impact on the number of doctor and other ambulatory vis-
its. Both doctor and ambulatory visits decrease with the number of children,
and tend to have a concave relationship with age. The enrollment coefficient
for doctor visits is negative and significant. This suggests that enrollment in
the managed care program leads to a decrease in the number of doctor office
visits. On the other hand, the enrollment coefficient is insignificant in the
ambulatory equation.

We have also computed the predicted marginal effects of changes in the
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Table 1: Coefficient Estimates and t-ratios for Bivariate Negative Binomial
and Bivariate Poisson-Laguerre Polynomial Models

Bivariate Negative Binomial BIVARPL
Variable Doctor Ambulatory Doctor Ambulatory
Est. |t]| | Est. |t| | Est. |t] | Est. |t
Constant -1.147 .62 | -1.413 87 [ -1.103 .33 | -.635 .02
Children -234 233] -150 1.65| -.149 .50 | -.223 .64
Age 085 .91 .069 .78 065 .32 011 .01
(Age)? x10? -135 1.06 | -.120 1.00| -.117 .40 | -.033 .02
Income x1074 297 .64 048 1.38 194 .20 770 .22
PC1 394 5.83 296 347 | 372 3.94 365 4.27
PC2 -.060 .58 .034 41 .009 .10 .046 .03
Access 009 1.71| -.009 1.41 010 1.13| -.010 1.34
Married -082 27| -634 1.79| -.014 18| -.653 1.05
White -192 .76 222 90| -.008 .01 222 .26
Schooling 009 .25 .033 73 019 .23 .048 13
Enroll -.683 2.56 .008 09| -.609 231 -.072 24
log (612 )
log(«) =370 2.79
log () -.839 6.18 | -1.638 10.33
P _163 528
Log-likelihood -1507.0 -1166.8
AIC 3064.0 2387.8




explanatory variables on the mean number of doctor and ambulatory visits
(not reported). Generally, the estimated marginal effects are smaller in BI-
VARPL than in the bivariate negative binomial model. The sample average
of the correlation between Doctor and Ambulatory is 0.544 for the bivariate
negative binomial and about 0.014 for BIVARPL model.

5 Conclusion

We have developed a general bivariate count regression model for which,
unlike existing commonly used models, we obtain a computationally simple
closed form of the model with an unrestricted correlation pattern. The
model allows for truncation and censoring without further computational
complexity. In the empirical illustration, the proposed model fits the data
better than the bivariate negative binomial model.
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