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Abstract

We consider the problem of selecting a subset of a feasible set over which each agent has a
strict preference. We propose an invariance property, converse reduction-consistency, which
is the converse of reduction-consistency introduced by Yeh (2006), and study its
implications. Our results are two characterizations of the Pareto rule: (1) it is the only rule
satisfying efficiency and converse reduction-consistency and (2) it is the only rule satisfying
one-agent efficiency, converse reduction-consistency, and reduction-consistency.
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1 Introduction

We consider the problem of selecting alternatives from a set of feasible alternatives
over which each agent has a strict preference (no indifference between any two alterna-
tives). Such a problem, called a “collective choice problem,” arises for instance when
the members of a committee have to elect new members from a slate of candidates.
How should the candidate(s) be elected? A “rule” is a mapping that associates with
each such problem a non-empty subset of the feasible set.

Our goal here is to propose an invariance property, “converse reduction-consistency,”
of rules and study its implications. The property is the converse of “reduction-
consistency” (Yeh, 2006), which is an application for collective choice problems of
a general principle of “consistency.”! Reduction-consistency says the following. Con-
sider a problem and an alternative x chosen by a rule for it. Imagine now that some
agents “leave” with the understanding that x would be chosen, and reassess the sit-
uation from the viewpoint of the remaining agents. A condition for an alternative to
be acceptable as a choice by the remaining agents is that each of the departing agents
be indeed guaranteed a welfare level that he was initially promised. The revised
preferences of the remaining agents are then obtained by restricting their original
preferences to those acceptable alternatives. Reduction-consistency requires that x
should still be chosen by the rule in the reduced situation just defined.? Our main
property, converse reduction-consistency, says that if an alternative is chosen by a
rule for all of its associated reduced situations, then it should be chosen by the rule
for the original problem.

We first study the existence of rules that satisfy converse reduction-consistency.
As we show, the Pareto rule, which chooses all “Pareto-efficient” alternatives for each
problem, is conversely reduction-consistent (Proposition 1). Moreover, it can be veri-
fied that the Pareto rule is also reduction-consistent. Is there any rule other than the
Pareto rule that satisfies the two properties? The answer is yes. The feasibility rule,
which chooses all feasible alternatives for each problem, is another example. However,
the rule violates the basic requirement of efficiency: if an alternative is chosen, there
is no other alternative that all agents strictly prefer.® Of course, the Pareto rule is
efficient. We ask whether there exists any rule other than the Pareto rule satisfying ef-
ficiency, reduction-consistency, and converse reduction-consistency. Surprisingly, the
answer is no. In fact, a more general result can be proved: efficiency and converse
reduction-consistency are satisfied only by the Pareto rule (Theorem 1). Note that
as we show, under reduction-consistency, efficiency is equivalent to a weaker version
of efficiency, “one-agent efficiency,”* obtained by restricting attention to one-agent
situations (Lemma 1). Thus, Theorem 1 and Lemma 1 give us another characteri-
zation of the Pareto rule. Namely, it is the only rule satisfying one-agent efficiency,
reduction-consistency, and converse reduction-consistency (Theorem 2).

1For a comprehensive survey of consistency and its converse, see Thomson (2000).

2The definition of reduction-consistency is motivated by the notion of the property, “separability,”
which is proposed by Moulin (1984) in the model of choosing a point in an interval over which agents
have “single-peaked preferences.”

3Ju (2005) considers the problem of choosing a subset of alternatives over which each agent has
a “trichotomous” or “dichotomous” preference, and bases characterizations of plurality-like social
choice rules on efficiency.

4Ching (1996) refers to it as individuality.



2 Notation and definitions

There is an infinite set of “potential” agents, indexed by the natural numbers N. Let
N denote the class of non-empty and finite subsets of N. Let X be a set of potential
alternatives. We assume that X is countably infinite. Let A denote the class of non-
empty and finite subsets of X. We use C for strict set inclusion, and C for weak set
inclusion.

Given N € N, X € X, and i € N, agent #’s preference relation on X,
denoted by R;, is a binary relation on X. We assume that R; satisfies the following
two conditions. We say that R; is complete if for each {z,y} C X, we have either
x R; y or y R; . Thus, completeness implies that for each x € X, x R; x. We say
that R; is transitive if for each {z,y,2} C X, 2 R; y and y R; z together imply
x R; z. Throughout our presentation, we restrict attention to preference relations
for which distinct alternatives are never indifferent. Formally, R; is strict if for each
{z,y} € X, x R; y and y R; = together imply z = y. Let P, denote the strict
preference relation derived from R;. Let P(X) be the class of all strict preference
relations on X. A preference profile on X is a list P = (P;);ey such that for
each i € N, P, € P(X). A choice problem for N, or simply a problem for N, is
a pair (X, P) such that X € X and P € PV (X).> Let DV denote the class of all
problems for N, and D = (Jycp DY . A choice rule on D, or simply a rule on D, is a
correspondence that associates with each N € A and each (X, P) € DV a non-empty
subset of X. Our generic notation for rules is ¢.

We now introduce the Pareto rule. It is the rule that chooses all “Pareto-efficient”
alternatives.

Pareto rule, PE: For each N € N and each (X, P) € DV,
PE(X,P)={r e X|Pyec X\{z} such that y P,z Vie N}.

The Pareto rule satisfies the following properties informally defined in the intro-
duction.

Efficiency: For each N € N, each (X, P) € DV, and each = € ¢(X, P), there is no
y € X\ {x} such that for each i € N, y P, x.

One-agent efficiency: For each N € A/ with |[N| = 1, each (X, P) € DV, and each
x € p(X, P), there is no y € X\ {x} such that for each i € N, y P, .

Clearly, efficiency implies one-agent efficiency. As we show in the next section,
one-agent efficiency, when imposed in conjunction with the following invariance prop-
erty introduced by Yeh (2006), implies efficiency. To define the property, we introduce
the following notation. Let N € N with [N| > 1, (X, P) € DV with |X| > 1,z € X,
and N' e N with NC N. Let X'={ye X |y P azVie N\N }|J{z}. For each
i € N, let P;|x denote the restriction of P; to X’. Formally, for each {y,z} C X',
y P; z if and only if y P;|x» z. Then, the reduced problem of (X, P) relative to
x and N’, denoted 7%, (X, P), is defined by

rv (X, P) = (X/’ (Pi|X’)ieN’) :

5PN (X) means the Cartesian product of |N| copies of P(X), indexed by the elements of N.
Similar expressions in the rest of the paper should be interpreted in the same manner.




Reduction-consistency: For each N € N, each (X, P) € DV, each x € ¢ (X, P),
and each N’ € N with N’ C N, we have 7%, (X, P) € DV and z € o(r%. (X, P)).6

Next is the converse of reduction-consistency, which is central to our analysis.

Converse reduction-consistency: For each N € N, each (X,P) € DV, and
each € X, if for each N’ C N, r%,(X,P) € DV and x € ¢(r%, (X, P)), then
rep(X,P)

3 Results

We present two characterizations of the Pareto rule and start with the following fact,
which is used to prove the existence parts of our results.

Proposition 1 The Pareto rule satisfies converse reduction-consistency.

Proof. Let N € N, (X,P) € DY, and v € X. Let N' € N with N’ C N,
r%,(X,P) € DV, and € PE(r%,(X, P)). We show that 2 € PFE(X, P). Suppose,
by contradiction, that = ¢ PE(X, P). Then, there is y € X\ {x} such that for each
i € N,y P; xz. Thus, (i) for each i € N, y P; x and (ii) for each 1 € N\N', y P, x. It
follows that « ¢ PE(r%.,(X, P)), a contradiction. Q.E.D.

Thanks to Proposition 1, we are now ready to prove our first characterization of
the Pareto rule.®

Theorem 1 The Pareto rule is the only rule satisfying efficiency and converse
reduction-consistency.

Proof. Clearly, the Pareto rule satisfies efficiency. As shown in Proposition 1, the
rule satisfies converse reduction-consistency. Conversely, let ¢ be a rule satisfying the
two properties. Let N € A/ and (X, P) € DV. We show that PE (X, P) = ¢ (X, P).

The proof is by induction on |N|.

Case 1: |N| =1. Since there is only one agent and his preference relation is
strict, |PE (X, P)| = 1. By efficiency, ¢ (X, P) C PE (X, P). Thus, PE (X, P) =
v (X, P).

Case 2: |N| > 1. The induction hypothesis is that for each N’ € N with N’ C
N and 1 < |N’| < |N|, and each (X’,P") € DV, PE(X',P') = ¢(X',P"). We
show that PE (X, P) = ¢ (X, P). By efficiency, ¢ (X,P) C PE(X,P). We show
next that PE (X, P) C ¢ (X,P). Let x € PE(X,P). Note that the Pareto rule
is reduction-consistent. It follows that for each N’ € N with N’ C N and each

6 Alternatively, we can define reduction-consistency as follows: for each N € N, each (X, P) €
DN each x € ¢ (X, P), and each N’ € N with N’ € N, if r%, (X, P) € DV, then = € p(r%, (X, P)).
Our results do not change essentially even if we use this alternative definition.

" Alternatively, we can define converse reduction-consistency by writing the hypothesis only for
all subsets of size 2. Formally, for each N € A/, each (X,P) € DV and each z € X, if for each
N’ C N with |N'| = 2, r%,(X,P) € DV and z € (1%, (X, P)), then 2 € ¢ (X, P). However, if
we use this alternative definition, the uniqueness parts of our main results are not guaranteed. For
detailed discussions, see the concluding remarks.

8The proof of Case 2 of Theorem 1 is an application of the “Elevator Lemma” (Thomson, 2000),
which states that if a rule ¢ is consistent, ¢’ is conversely consistent, and ¢ C ¢’ in the two-agent
case, then ¢ C ¢’ in general.



r%,(X,P) € DV, 2 € PE(r%,(X, P)). Since [N'| < |N|, by induction hypothesis,
o (r}. (X, P)) = PE (r%,(X, P)). Thus, z € ¢ (r%.(X, P)). By converse reduction-
consistency, x € ¢ (X, P). Q.E.D.

Our second characterization of the Pareto rule makes use of the following logical
relation between one-agent efficiency, reduction-consistency, and efficiency.’

Lemma 1 If a rule satisfies one-agent efficiency and reduction-consistency, then it
satisfies efficiency.

Proof. Let ¢ be a rule satisfying one-agent efficiency and reduction-consistency. We
show that ¢ is efficient. Suppose, by contradiction, that ¢ is not efficient. Then,
there is N € N, (X, P) € DV, and = € ¢ (X, P) in which there is y € X\{z} such
that for each i € N, y P; . Let N’ C N with |N’| = 1. By reduction-consistency,
x € ¢ (r§, (X, P)). Since for each ¢ € N, y P; z, it follows that z is not the most
preferred alternative in the reduction problem r%, (X, P). Thus, it contradicts one-
agent efficiency. Q.E.D.

Our second characterization of the Pareto rule is an immediate consequence of
Lemma 1 and Theorem 1. We omit its proof.

Theorem 2 The Pareto rule is the only rule satisfying one-agent efficiency, reduction-
consistency, and converse reduction-consistency.

We now show that the properties listed in Theorems 1 and 2 are logically indepen-
dent. For this purpose, we introduce additional rules. The first rule, Z, chooses all
feasible alternatives. Formally, for each N € A and each (X, P) € DY, Z(X,P) = X.

Next is the family of fixed-order rules introduced by Yeh (2006).1° Formally, let
Py € P(X) be a strict preference relation on X. Then, the fixed-order rule relative
to Py, F*, chooses the most preferred alternative according to Py from the set of
Pareto-efficient alternatives. Formally, for each N € A and each (X,P) € DY,
Fh(X,P)={xr € PE(X,P)| foreach y € PE(X,P)\{z}, z Pyy}.

The last rule is a modification of the feasibility rule. To define it, we introduce
the top rule, T'op, which chooses the alternatives most preferred by at least one agent.
Formally, for each N € N, each (X, P) € DV, each x € X, and each i € N, if x is the
most preferred alternative according to P;, then t (z, P;) = 1; otherwise, t (z, P;) = 0.
Then, Top (X, P) = {x € X |3i € N such that ¢ (x,P;) = 1}. Thus, our modified
feasibility rule, Z*, is defined as follows. If there is only one agent, it chooses the
most preferred alternative of that agent; otherwise, it chooses all feasible alternatives.
For each N € N and each (X, P) € DV, if |[N| = 1, then Z* (X, P) = Top (X, P);
otherwise, Z* (X, P) = Z (X, P).

The feasibility rule satisfies converse reduction-consistency but violates efficiency.
The fixed-order rules satisfy efficiency but violate converse reduction-consistency.

9Gimilar results have also been obtained in the theory of TU games. For references, see Lemma 5.4
in Peleg (1985), Lemma 5.5 in Peleg (1986), and Lemma 1 in Tadenuma (1992).

10This family of rules is inspired by the family of “target rules” studied by Ching and Thom-
son (1992) in the context of choosing a point in an interval over which each agent has a “single-
peaked preference.” Given a point or a target in an interval, the associated target rule is described
as follows: if the target is “Pareto-efficient,” then the rule chooses this point; otherwise, it chooses
the point in the set of Pareto-efficient points that is closest to the target.

4



Thus, the properties listed in Theorem 1 are logically independent. Note that the
feasibility rule satisfies reduction-consistency but violates one-agent efficiency. The
fixed-order rules satisfy one-agent efficiency and reduction-consistency, but violate
converse reduction-consistency. The modified feasibility rule satisfies one-agent effi-
ciency and converse reduction-consistency, but violates reduction-consistency. Thus,
the properties listed in Theorem 2 are independent.

4 Concluding remarks

We proposed an invariance property, converse reduction-consistency, which is the con-
verse of reduction-consistency (Yeh, 2006), and studied its implications. We showed
that the Pareto rule is the only efficient rule satisfying the property (Theorem 1),
suggesting that converse reduction-consistency is quite demanding. In the theory of
TU games, Peleg (1985, 1986) and Tadenuma (1992) showed that “individual ratio-
nality” together with “consistency” implies “Pareto-optimality.” We obtained a sim-
ilar result for the model under consideration. Namely, one-agent efficiency together
with reduction-consistency implies efficiency (Lemma 1). Exploiting Theorem 1 and
Lemma 1 gives us another characterization of the Pareto rule: it is the only rule satis-
fying one-agent efficiency, reduction-consistency, and converse reduction-consistency.
This result is parallel to Peleg and Tijs (1996)’s characterization of Nash equilibrium
solution for games in strategic form.

One may wonder whether it is crucial for the results to write the hypothesis of
converse reduction-consistency for all subsets of the set of agents rather than for
subsets of size 2. The answer is yes. The following rule, R*, shows that if the
hypothesis of converse reduction-consistency is made only for subsets of size 2, the
Pareto rule is not the only rule satisfying efficiency and the new version of converse
reduction-consistency just defined. The rule R* is defined as follows: for each NV €
N and each (X,P) € DV, if [IN| = 2, then R*(X,P) = Top (X, P); otherwise,
R*(X,P)=PE (X, P).

In Section 3, we introduced the three rules, Z, F°, Z* to illustrate that the
properties listed in each of our characterizations are logically independent. In Section
4, we introduced the rule, R*, to illustrate that the Pareto rule is not the only rule
satisfying efficiency and the converse reduction-consistency for subsets of size 2. To
summarize these results, we make the following table.

Property \ Rule Z | Fho| z* | R*
one-agent efficiency No | Yes | Yes | Yes
efficiency No | Yes | No | Yes
reduction-consistency Yes | Yes | No | No
converse reduction-consistency Yes | No | Yes | No
converse reduction-consistency for subsets of size 2 | Yes | No | Yes | Yes

Table 1: The notation “Yes” (“No”) means that a certain rule satisfies (violates) a
certain property.



Appendix

In the text, we claim that the fixed-order rules and the rule R* violate converse
reduction-consistency. Here are proofs.
Claim 1 The fixed order rules violate converse reduction-consistency.

Proof. The proof is by means of an example. Let N = {1,2,3}, X = {x,y, z}, and
y Py x Py z. Consider the following preference profile:

P P P
r Ty
y oz oz
2y oz

Consider = € X. The reduced problems with respect to z and N’ C N with |N'| =2
are the followings:

Pilgysr  Polisys

x x Pilsy Biliy Pl Bl
Y z x x x x
z y

The reduced problems with respect to z and N’ C N with |[N’| = 1 are the followings:

Play  Pluy Bl
X i X

Clearly, for each N’ ¢ N, {z} = F™ (r%, (X, P)). However, {y} = F™ (X, P).
Q.E.D.

Claim 2 The rule R* violates converse reduction-consistency.

Proof. The proof is by means of an example. Let N = {1,2} and X = {z,y, z}.
Consider the following preference profile:

P P
Tz
y oy
z

The reduced problems with respect to y and N’ C N with |[N'| = 1 are the followings:

Pl () Pz

Y Y
z x

Clearly, for each N C N, {y} = R*(r%, (X, P)). However, R* (X, P) = {z,z}.
Q.E.D.
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