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Abstract

In this article, we have demostrated the application of two newly proposed estimators which
accounts for lack of overlap under propensity score matching on a case study involing the
analysis of health expenditure data for the United States.
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Introduction 
 
Propensity score matching is a technique for removing possible selection bias on 
observables, now widely used in health services research. Propensity score matching 
specifies a function of measuring the proximity of one case to another, based on many 
observed characteristics; cases are then grouped to minimize the distance between 
matched cases. The literature presents several matching techniques, which Baser (2006) 
compared using a real-world example.  
 
To work well, the propensity score method requires sufficient “support” of the groups 
and a strong overlap of the distribution of the variables in treatment and control groups. 
Insufficient overlap , may result in imprecise estimates that are sensitive to the choice of 
specification. Below we present some empirical evidence on the importance of this 
source of noncomparability bias.  
 
Heckman, Ichimura and Todd (1998) and Dehejia and Wahba (1999) point out the 
empirical relevance of the overlap issue. Several techniques have been proposed to deal 
with the problem. Cochran and Rubin (1973) suggest caliber matching, wherein potential 
matches are dropped if the within-match differences in propensity score exceed one-
fourth of the standard deviation of the estimated propensity score. Rubin (1977) suggests 
simply discarding all units with covariate values with either no treated or no control units. 
Dehejia and Wahba (1999) focus on the average treatment effect for the treated group and 
suggest discarding all controls with estimated propensity score below the smallest value 
of the propensity score among the treated group. Heckman et al. (1988) drop units from 
the analysis if the estimated density of the covariate distribution conditional on treatment 
status is below some threshold.  
 
All these methods have drawbacks, since they rely on arbitrary choices regarding 
thresholds for discarding observations. None   offer a formal justification, and evidence 
that they improve the efficiency of the estimands and reduce the bias is limited.  
 
Crump et al. (2006) recently proposed a method that provides a systematic approach to 
account for subpopulations with limited overlap in the covariates. Thus far this method 
has not been applied to health services data, where propensity score matching is common 
practice.. The objective of this study is to apply the proposed methodology for adjusting 
for the lack of overlap to the estimation of healthcare expenditures.  In the next section 
we briefly describe this method and how we applied it to it to Medstat MarketScan® data 
from Thomson. 
 
 
 
 
 
 



Study Design and Methods 
 
Two specific methods proposed by Crump et al. (2006) can be summarized as follows: 
 

1. The first method focuses on average treatment effects within a selected 
subpopulation, defined in terms of covariate values by balancing possible two 
opposing effects: (a) the increase in variance of the estimated average treatment 
effect due to smaller (subpopulation) sample size (b) the decrease in variance of 
the estimated average treatment effect due to discarding observations whose 
efficient comparable representative is missing. Crump et al. formulate the 
optimum value of  a  that balances the two opposing effects and show that for a 
subpopulation whose estimated propensity scores (e(x)) is in between [a,1-a], it is 
possible to estimate average treatment effect more precisely than the average 
effect for the entire population. This estimator is referred to as optimal 
subpopulation average treatment effect (OSATE). 

2. The second method, called optimally weighted average treatment effect 
(OWATE), considers weighted average treatment effects with the weights 
depending only on the covariates. The optimal weight function is a function of the 
propensity score alone, proportional to the product of the propensity score and 
one minus the propensity score.  Under homoskedasticity, the weight is simply 
e(x) * (1-e(x)).   Formulas are presented at Crump et al. (2006). 
  

Since the method inherently lowers the weight on high-variance observations and 
increase the weight on the observations with propensity score close to one-half, sub 
samples based on these estimators tend to be more balanced in the distribution of 
covariates. 

Increase in precision of the estimates is another advantage of the proposed method. 
By discarding the observations for which average treatment effect cannot be 
estimated efficiently, the methods increases the internal validity at the expense of 
external validity. For most cases in health research, the former is more important. 

More relevantly, in pharmacoeconomics, the primary interest might be to estimate the 
treatment effect of some group of patients in a broader population. Usually it is more 
difficult to find comparable match for sicker patients, so most often a more precise 
estimator is sacrificed by including these patients and their “not well matched” 
controls.  The proposed two estimators, although based on subpopulations, allow us 
to make more precise inferences, rather than reporting potentially biased estimate for 
population average effect.  
Finally, since true randomization is not possible in observational studies, any 
evidence that supports the reliability of our population average treatment estimator 
using propensity score matching is valuable information. In this respect, these 
estimators are useful because, if the variance reduction suggested by OSATE or 
OWATE estimators is not significant relative to the variance of average treatment 
effect, we can conclude that our population average effect is reliable.  



 

Data Source 
  

This retrospective claims analysis used data from the Medstat  MarketScan Commercial 
Claims and Encounters (Commercial) Database for 1998–2004. These data include health 
insurance claims across the continuum of care (e.g. inpatient, outpatient, outpatient 
pharmacy, carve-out behavioral healthcare), plus enrollment data from large employers 
and health plans across the United States who provide private healthcare coverage for 
more than 33 million employees, their spouses, and dependents. This administrative 
claims database includes a variety of fee-for-service, preferred provider organizations, 
and capitated health plans.  

The study population consisted of subjects with an International Classification of Disease 
(9th revision,  or ICD-9) primary diagnosis of prostate cancer (185.0 236.5) in the 
inpatient, outpatient, or emergency department setting. For outpatient claims, we required 
that   ICD-9 codes appear on two or more claims at least 30 days apart, in order to 
exclude patients with rule-out diagnoses only. We required that subjects were 
continuously enrolled for 12 months before the index date and 36 months after the index 
date, and had prescription drug benefits for the entire study period. The analytic sample 
consisted of 8,576 prostate cancer patients and 30,550 cancer-free patients. We calculated 
a baseline Charlson comorbidity index (CCI) score for each group and also used age, 
health plans (indemnity, POS, PPO, capitated POS), and geographic region for the 
estimation of propensity score. 
The total cost of healthcare was measured as total medical costs for all inpatient, 
outpatient, pharmaceuticals, radiology, and emergency room (ER) visits in the three-year 
follow-up period. Costs incurred in 1999–2003 were adjusted to 2004 dollars based on 
the Consumer Price Index–Medical Component. 

Results 
This study was undertaken to answer several questions: (a) Is it possible to estimate 
burden of illness for prostate patients with covariate adjustment for our population?(b) If 
not, can we identify an optimal subpopulation that allows us to estimate the burden of 
illness? (c) How much does the precision of our estimates change if we shift population 
estimate to subpopulation estimate?  
  
Table 1 presents summary statistics. It is evident that both cancer and non-cancer groups 
differ dramatically from the treatment group in terms of pre-period CCI, age, region, and 
most of the health plans; all of the mean are significantly different from zero, well 
beyond a 1%  level of significance except the indicator “POS” and “North Central.” For 
the prostate cancer group, the pre-period CCI is 2.8075. For the cancer-free group, it is 
only 0.9197. Given the standard deviation of 1.7332, this sample suggests that simple 
covariance adjustment is unlikely to yield credible inferences. 
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Normalized differences in cancer and non-cancer group averages are shown in the table. 
Even with sample size and ratio of cancer to non-cancer group fixed, the cumulative 
probability distribution function of statistics such as a t test (or corresponding p-values) 
can be uninformative if the variances of two samples are vastly different.  
For this dataset, we estimated the propensity score using a logistic model with all nine 
covariates entering linearly. We then used the estimated propensity score to calculate the 
optimal cut-off point, a. The optimal cutoff point is a = 0.0211.  

According to this criterion, 34,463 observations should be discarded. Out of the original 
8,576 cancer and 30,550 non-cancer patients, only 1,752 patients from the cancer group 
and 2,912 patients from the non-cancer group were left. In Table 2, we present the 
number of observations in the various categories. Here OSATE methodology suggests 
dropping 32,680 out of 34,463 observations, leaving 1,783 observations, or just 5% of the 
original sample. This suggests that the covariate values for some non-cancer patients are 
so far from those of the cancer patients that attempting to estimate burden of illness for 
these covariate values would be unrewarding.  

 

Table 2. Subsample Sizes for Analytic File, Propensity Score Threshold 0.0211 

 E(x)<a a<e(x)<1-a 1-a<e(x) All 

Cancer-Free Group 2,102 658 152 2,912 
Prostate Cancer Group 245 1,125 382 1,752 
All  2,347 1,783 534 4,664 

 
Table 3 presents asymptotic standard errors for the difference in total healthcare 
expenditures between cancer patients and non-cancer patients. The first one is the 
standard error for the population average treatment effect (ATE).  The second is the 
asymptotic standard error for the average treatment effect (OSATE) in the subpopulation 
with a<e(x)<1-a, for the optimal value of a=0.02111. The third is the standard error for 
the optimally weighted average treatment effect (OWATE). The last one is the 
asymptotic standard error for the average treatment effect for the treated (ATT).  

Table 3. Asymptotic Standard Errors 

 ATE OSATE OWATE  ATT 

Asymptotic Standard Error 434.9984 2.0140 2.6521 5.2142 
Ratio to All  1.0000 0.0046 0.0061 0.0120 

 
Moving from the population average treatment effect to any of the three other estimands 
resulted in huge gains. Calculations suggest that OSATE lowers the variance by a factor 
of 0.0046, reflecting the sizeable difference between most of the controls and  the treated 
patients, as well as the difficulty of estimating the population burden of illness.   Thus 
large areas in the covariate space show essentially no treated units (prostate patients).   



Conclusion 
 
In practice, an important concern in implementing propensity score matching is the 
necessity of sufficient overlap between covariate distributions in the treatment and 
control groups, since limited overlap can result in estimators for average treatment effects 
with poor finite sample properties. In particular, such estimators can have substantial 
bias, large variances, and considerable sensitivity to the exact specification of the 
propensity score. In this case, optimal subpopulation can lead to precise estimators, 
which can be presented with the population average treatment effect. 

In this article, we have demonstrated the application of two newly proposed estimators on 
a case study involving the analysis of health expenditure data for the United States. Lack 
of overlap is especially important in health expenditure data; given the significance level 
of difference in disease staging between treated and control groups. Our results show 
that, due to significant differences in covariates between the prostate cancer patient and 
non-cancer groups, we cannot estimate the burden of illness for our population precisely 
even after covariate adjustments between the two groups; the gap was simply too large to 
support reliable conclusions. However, we did identify an optimal subpopulation that 
would produce the efficient and precise estimates.     

 
The methods suggested by Crump et al. (2006) and applied here are not relevant in all 
situations. First, these methods change the estimands. The estimators focus on the 
average effects for a subpopulation or a weighted subpopulation, so generalization to the 
larger population would not be correct. Instead of reporting solely the potentially 
imprecise estimate for the population average treatment effect, it has been proposed that 
we report estimates both for the population of interest and for the subpopulation, where 
one can make more precise inferences.  Second, there may be important unobservable 
covariates for which these adjustment using observable covariates cannot account. 
Several techniques are available to control for unobservable factors, such as the 
Instrumental Variable method (Wooldridge, 2002) or Rosenbaum’s bounding 
(Rosenbaum, 2002) approach, but these estimations are confounded by their own 
limitation.  
This article does not provide detailed or rigorous consideration of the method that 
underlines the application. Curious readers are encouraged to consult the method article 
by Crump et al. (2006).  
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