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Abstract 

This article considers a Bayesian testing for cointegration rank, using an approach developed by Strachan and van Dijk 
(2007), that is based on Koop, Leon-Gonzalez, and Strachan (2006). The Bayes factors are calculated for selecting 
cointegrating rank. We calculate the Bayes factors using two methods - the Schwarz BIC approximation and Chib's 
(1995) algorithm for calculating the marginal likelihood. We run Monte Carlo simulations to compare the two methods.
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1 Introduction
This article considers testing for cointegrating rank with Bayesian approach based on Strachan and van Dijk (2007),
that extends Koop, Leon-Gonzalez, and Strachan (2006) (hereafter KLS). Bayesian approach to analyze a cointegrated
system suffers from both local and global identification problems through restrictions to the linear normalization on
the cointegrating vectors. Recent literature such as Strachan (2003), Strachan and Inder (2004) and Villani (2005,
2006) show that it is important to elicit a prior on the space spanned by the cointegrating vectors in order to overcome
identification problems. KLS develop algorithms to carry out efficient posterior simulation to elicit a prior on the space
spanned by the cointegrating vectors. Strachan and van Dijk (2007) extends the KLS method for model averaging in
vector autoregressive processes.

To estimate the number of rank in a vector error correction model (VECM), we consider two methods to compute
the Bayes factor - the Schwarz BIC approximation method and Chib’s (1995) algorithm for calculating the marginal
likelihood. We run Monte Carlo simulations to compare the performances of these methods.

This article is structured as follows. Bayesian inference for a VECM is illustrated in Section 2. Section 3 presents
Monte Carlo simulations using artificially generated data for the VECM with various rank in order to examine the per-
formances of detecting the number of rank using the Chib and the BIC methods. Section 4 concludes. All computation
in this article are performed using code written by the author with Ox v4.10 for Linux (Doornik, 2006)

2 Bayesian Inference in a Vector Error Correction Model
In this section, we present a Bayesian inference in a vector error correction model (VECM) based on Strachan and
van Dijk (2007) that modified method proposed by KLS. Let yt denote a vector of 1× n with r linear cointegrating
relations. Then, with εt ∼ iidN(0,Ω), a VECM with p lags is expressed as

∆yt = (yt−1β
+ +d1,tθ1)α+d2,tθ2 +

p

∑
l=1

∆yt−lΓl + εt (1)

where ∆yt = yt−yt−1, εt is 1×n; Γl and Ω are n×n, the cointegrating vector β+ and the adjustment term α′ are n× r,
assumed to have rank r. The deterministic terms, d1,tθ1 (d1,t is 1×m1, and θ1is m1× r) and d2,tθ2 (d2,t is 1×m2,
and θ2 is m2×n) are defined as follows. For example, if the process contains both an intercept and linear time trend,
then θi,t = (µ′i,δ

′)′ and di,t = (1, t), or if the process contains an intercept but no time trend, then θi,t = µi and di,t = 1.
Let the 1× (n+m1) vector z1,t = (yt−1,d1,t), the 1× (m2 +nl) vector z2,t = (d2,t ,∆yt−1, . . . ,∆yt−l), the (m2 +nl)×n
matrix Φ =

(
θ′2,Γ

′
1, . . . ,Γ

′
l

)′, and the (m1 +n)× r matrix β = (β+′,θ′1)
′, then we can rewrite the equation (1) as

∆yt = z1,tβα+ z2,tΦ+ εt (2)

Let define the T × n matrix y = (∆y′1, . . . ,∆y′T )′, the T × n matrix ε = (ε′1, . . . ,ε
′
T )′, the T × (n + m1) matrix Z =

(z′1,1,z
′
1,2, . . . ,z

′
1,T )′, the T × (m2 + nl) matrix x = (z′2,1,z

′
2,2, . . . ,z

′
2,T )′, the T × (m2 + nl + r) matrix W = (Zβ,x), and

the (m2 +nl + r)×n matrix B = (α′,Φ′)′, then (2) can be simplified as

y = Zβα+ xΦ+ ε (3)
= WB+ ε (4)

To estimate the VECM expressed in (4), we follow a Bayesian approach to analyze a VAR model with multiple
structural breaks proposed by Sugita (2007). First we need to specify the prior distributions for the parameters given in
the model. For the prior for the covariance-variance matrix, Ω, we assign an inverted Wishart distribution with mean
Ω0 and degree of freedom ν0 as Ω∼ IW (Ω0,ν0). For the prior for B, we consider that the vectorized B is a multivariate
normal with mean vec(B0) and variance VB0 as vec(B)∼MN(vec(B0),VB0). For the prior for the cointegrating vector β,
we adopt the KLS’s efficient method of posterior simulation based on the idea of a collapsed Gibbs sampler developed
in Liu (1994) and Liu, Wong and Kong (1994). The KLS’s method states that the matrix of long run multipliers can be
decomposed as βα = [βκ][κ−1α] = ba where β is restricted to be semi-orthogonal, b = βκ, a = κ−1α, and κ is positive
definite and defined as κ = (αα′)1/2. We give b a Normal prior with mean b0 and covariance matrix Vb0 .

The likelihood function is given as
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L(β,B,Ω | Y ) ∝ |Ω|−T/2 exp
[
−1

2
tr
{

Ω
−1 (y−WB)′ (y−WB)

}]
= |Ω|−T/2 exp

[
−1

2
tr
{

vec(y−WB)′ (Ω⊗ IT )−1 vec(y−WB)
}]

With this likelihood and the priors, we obtain the following joint posterior:

p(β,B,Ω | y) ∝ p(β,B,Ω)L(β,B,Ω | y)

∝ p(b) |Ω0|ν0/2 |Ω|−(T+ν0+n+1)/2 |VB0 |
−1/2 exp

[
−1

2
{

tr
(
Ω
−1)+vec(y−WB)′

×(Ω⊗ IT )−1 vec(y−WB)
}

+vec(B−B0)
′V−1

0 vec(B−B0)
]

= p(b) |Ω0|ν0/2 |Ω|−(T+ν0+n+1)/2 |VB0 |
−1/2 exp

[
−1

2
{

tr
(
Ω
−1)+vec(B−B?)

′

×V−1
B?

vec(B−B?)+ξ
}]

where p(b) denotes the prior for b, and

ξ = vec(y)′ (Ω⊗ IT )−1 vec(y)+vec(B0)
′V−1

B0
vec(B0)−vec(B?)

′V−1
B?

vec(B?) ,

vec(B?) =
[
V−1

B0
+
{

Ω
−1⊗

(
W ′W

)}]−1{
V−1

B0
vec(B0)+(Ω⊗ Iκ)

−1 vec
(
W ′y

)}
,

and

VB? =
[
V−1

B0
+
{

Ω
−1⊗

(
W ′W

)}]−1

By integrating out above joint posterior, the conditional posterior of Ωi is derived as an inverted Wishart distribution
with mean Ω? and degree of freedom T +ν0 as:

p(Ω | β,B,Y ) ∝ |Ω?|T/2|Ω|−(T+ν0+n+1)/2 exp
[
−1

2
tr
(
Ω
−1

Ω?

)]
(5)

where Ω? = (y−WB)′ (y−WB)+Ω0. The conditional posterior of vec(B) is derived as a multivariate normal density
with mean vec(B?) and covariance VB? , that is,

p(vec(B) | β,Ω,y)

∝ |VB? |
−1/2 exp

[
−1

2
{

vec(B−B?)
′V−1

B?
vec(B−B?)

}]
(6)

See Sugita (2007) for deriving above conditional posterior densities.
To obtain the conditional posterior for the cointegrating vectors, we rewrite the equation (3) as

y = Zba+ xΦ+ ε (7)

where b and a are used instead of β and α respectively. By deducting xΦ from the both sides and then vectorizing the
both side, we obtain

vec(y− xΦ) = vec(Zba)+vec(ε)
=

(
a′⊗Z

)
vec(b)+vec(ε) , (8)
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or ỹ = zb̃+e where ỹ = vec(y− xΦ), z = a′⊗Z, b̃ = vec(b), and e = vec(ε). Thus, the conditional posterior distribution

for b̃ is a multivariate normal with mean b̃? and variance Vb̃?
where Vb̃?

=
[
V−1

b0
+
{(

aΩ−1a
)′⊗ (Z′Z)

}]−1
and b̃? =

Vb̃?

[
V−1

b0
vec(b0)+

(
aΩ−1⊗Z

)
ỹ
]
.

From these conditional posterior distributions derived above, we summarize the following Gibbs sampling scheme:

• Step 1: Set j = 1. Specify starting values for the parameters of the model, β(0) , B(0), and Ω(0).

• Step 2: Generate Ω( j) from p(Ω | β( j−1),B( j−1),y).

• Step 3: Generate vec(B)( j) from p(vec(B) | β( j−1),Ω( j),y) to obtain α∗. Compute a∗ using a∗ = (α∗α∗′)−
1
2 α∗.

• Step 4: Generate b∗ from p(b̃ |Ω( j),B( j),Y y). Then, compute β( j) = b∗(b∗′b∗)−
1
2 and α( j) = a∗(b∗′b∗)

1
2 .

• Step 5: Set j = j +1, and go back to Step 2.

Step 2 through Step 5 can be iterated N times to obtain the posterior densities. Note that the first L iterations are
discarded in order to remove the effect of the initial values.

There are several methods to calculate the Bayes factor such as Chib (1995), Gelfand and Dey (1994), the Savage-
Dickey density ratio (see Verdinelli and Wasserman, 1995), and the Schwarz Bayesian information criterion (BIC)
approximation method (Schwarz, 1978). Among these, we choose the BIC and Chib’s method to select the cointegrat-
ing rank. The BIC can give a rough approximation to the Bayes factors. It is, however, easy to implement and does
not require evaluation of the prior distribution, as Kass and Raftery (1995) note. The BIC to approximate the Bayes
factors is employed by Wang and Zivot (2000) for detecting the number of structural breaks. The BIC for model j,
M j, is calculated as

BIC j =−2lnL
(

θ̂ j | y;M j

)
+q j ln(t) (9)

where L
(

θ̂ j | y;M j

)
denotes the likelihood function under the model j; q j denotes the total number of estimated

parameters in M j. The likelihood function L
(

θ̂ j | y;M j

)
is evaluated at θ̂ j, the posterior means of the parameters for

M j.
With the BICs for M j and Mi, the Bayes factor for M j against Mi can be approximated by

BFji = exp [−0.5(BICi−BIC j)] . (10)

With the prior odds, defined as p(M j)/p(Mi), the posterior odds can be computed by multiplying the Bayes factor by
the prior odds as PosteriorOdds ji = BFji×PriorOdds ji. By using the BIC to approximate to logarithm of the Bayes
factor, it is easy to detect the number of the rank in the VECM as a problem of model selection.

The other method to calculate the Bayes factors is proposed by Chib (1995) providing a method of computing the
marginal likelihood that utilizes the output of the Gibbs sampler. The marginal likelihood can be expressed from the
Bayes rule as

p(y |Mi) =
p(y | θ?

i )p(θ?
i )

p(θ?
i | y)

(11)

where p(y | θ?
i ) is the likelihood for Model i evaluated at θ?

i , which is the Gibbs output or the posterior mean of
θi, p(θ?

i ) is the prior density and p(θ?
i | y) is the posterior density. If the exact forms of the marginal posteriors are

not known like our case, p(θ?
i | y) cannot be calculated. To estimate the marginal posterior density evaluated at θ?

i
using the conditional posteriors, first block θ into l segments as θ = (θ′1, . . . ,θ

′
l)
′, and define ϕi−1 = (θ′1, . . . ,θ

′
i−1) and

ϕi+1 = (θ′i+1, . . . ,θ
′
l). Since p(θ? | y) = ∏

l
i=1 p(θ?

i | y,ϕ?
i−1), we can draw θ

( j)
i , ϕi+1,( j), where j indicates the Gibbs

output j = 1, . . . ,N, from (θi, . . . ,θl) = (θi,ϕ
i+1)∼ p(θi,ϕ

i+1 | y,ϕ?
i−1), and then estimate p̂(θ?

i | y,ϕ?
i−1) as

p̂(θ?
i | y,ϕ?

i−1) =
1
N

N

∑
j=1

p(θ?
i | y,ϕ?

i−1,ϕ
i+1,( j)).

Thus, the posterior p(θ?
i | Y ) can be estimated as
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p̂(θ? | y) =
l

∏
i=1

{
1
N

N

∑
j=1

p(θ?
i | y,ϕ?

i−1,ϕ
i+1,( j))

}
. (12)

3 Monte Carlo Simulation
In this section we perform some Monte Carlo simulations to illustrate the performances of Bayesian tests for the
rank of cointegration described in the previous section. The data generating processes (DGPs) consist of two and
three-variable VECMs with an intercept term having various number of cointegrating vectors.

We consider the following DGPs for two-variable VECM:

DGP 1 with r = 0 : ∆yt = µ+ εt

DGP 2 with r = 1 : ∆yt = µ+ yt−1

[
1
−1

][
−0.1 −0.1

]
+ εt

DGP 3 with r = 2 : ∆yt = µ+ yt−1

[
1 0
0 1

][
−0.1 0.1
−0.1 −0.1

]
+ εt

where µ =
[

0.1 0.1
]
, and εt ∼ iidN(0,0.1I2).

We also consider the following DGPs for three-variable VECM:

DGP 4 with r = 0 : 4yt = µ+ εt

DGP 5 with r = 1 : 4yt = µ+ yt−1

 1
−1
1

[ −0.1 −0.1 −0.1
]
+ εt

DGP 6 with r = 2 : 4yt = µ+ yt−1

 1 0
0 1
−1 −1

[ −0.1 0.1 −0.1
−0.1 −0.1 0.1

]
+ εt

DGP 7 with r = 3 : 4yt = µ+ yt−1

 1 0 0
0 1 0
0 0 1

 −0.1 0.1 −0.1
−0.1 −0.1 0.1
−0.1 −0.1 −0.1

+ εt

where µ =
[

0.1 0.1 0.1
]
, and εt ∼ NID(0,0.1I3).

We demonstrate the performance of the test by varying the true rank. Each simulation of DGPs for various ranks
is repeated 1000 times. The sample size T is 50, 100, 200, 500, and 1000. The prior parameter specifications for the
natural conjugate prior are given with Ω0 = I, ν0 = 3.01, vec(B0) = 0, VB0 = 100I, b0 = 0, and Vb0 = 100I. These
prior variances are chosen for relatively noninformative prior.

Table 1 summarizes the results of Monte Carlo simulation for two-variable VECMs (n = 2) by computing the BIC
and the Chib’s method. Table 2 reports the results when n = 3. Each value in the Table represents the average posterior
probabilities of 1,000 iterations for each true rank. For each iteration, the Gibbs sampling is performed with 10,000
draws and the first 1,000 discarded.

Our findings from Table 1 and 2 are as follows. When T = 50, the highest average posterior probabilities do not
indicate the correct rank except when the true rank is 0. Increasing the sample size to 100 improves the performances
of test by the BIC as all highest average posterior probabilities indicate the true rank. When T = 200, the BIC method
chooses the correct rank with more than 90% for each of the rank. For the Chib’s method, only when T = 1000, each
of the true rank is correctly chosen.
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Table 1: Monte Carlo Results: The Average Posterior Probabilities with n = 2
T = 50 T = 100 T = 200 T = 500 T = 1000

DGP rank r BIC Chib BIC Chib BIC Chib BIC Chib BIC Chib
r = 0 0 0.945 1.000 0.968 1.000 0.982 1.000 0.993 1.000 1.000 1.000

1 0.048 0.000 0.029 0.000 0.017 0.000 0.007 0.000 0.000 0.000
2 0.008 0.000 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000

r = 1 0 0.416 0.996 0.044 0.747 0.000 0.049 0.000 0.000 0.000 0.000
1 0.391 0.004 0.720 0.253 0.975 0.951 0.998 1.000 0.999 1.000
2 0.193 0.000 0.236 0.000 0.025 0.000 0.002 0.000 0.001 0.000

r = 2 0 0.632 1.000 0.297 1.000 0.005 0.999 0.000 0.279 0.000 0.000
1 0.130 0.000 0.106 0.000 0.012 0.001 0.000 0.253 0.000 0.000
2 0.237 0.000 0.597 0.000 0.984 0.000 1.000 0.468 1.000 1.000

Table 2: Monte Carlo Results: The Average Posterior Probabilities with n = 3
T = 50 T = 100 T = 200 T = 500 T = 1000

DGP rank r BIC Chib BIC Chib BIC Chib BIC Chib BIC Chib
r = 0 0 0.972 1.000 0.993 1.000 0.995 1.000 1.000 1.000 1.000 1.000

1 0.027 0.000 0.007 0.000 0.005 0.000 0.000 0.000 0.000 0.000
2 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

r = 1 0 0.686 1.000 0.208 0.991 0.000 0.746 0.000 0.000 0.000 0.000
1 0.241 0.000 0.732 0.009 0.951 0.254 0.986 1.000 0.995 1.000
2 0.048 0.000 0.039 0.000 0.038 0.000 0.012 0.000 0.004 0.000
3 0.025 0.000 0.021 0.000 0.011 0.000 0.002 0.000 0.001 0.000

r = 2 0 0.554 1.000 0.114 0.998 0.000 0.867 0.000 0.000 0.000 0.000
1 0.175 0.000 0.123 0.002 0.006 0.118 0.000 0.022 0.000 0.000
2 0.228 0.000 0.679 0.000 0.919 0.016 0.945 0.978 0.956 1.000
3 0.043 0.000 0.084 0.000 0.074 0.000 0.055 0.000 0.044 0.000

r = 3 0 0.557 1.000 0.126 0.996 0.000 0.805 0.000 0.001 0.000 0.000
1 0.115 0.000 0.066 0.004 0.000 0.189 0.000 0.197 0.000 0.000
2 0.078 0.000 0.094 0.000 0.004 0.006 0.000 0.740 0.000 0.000
3 0.250 0.000 0.714 0.000 0.996 0.000 1.000 0.062 1.000 1.000

4 Conclusion
This article considers a Bayesian method to test for cointegrating rank. Estimating the cointegrated model is based
on Strachan and van Dijk (2007) and KLS, that is an efficient and valid method. The cointegrating rank is chosen
by computing the Bayes factors. The Bayes factors are calculated using the BIC method or the Chib’s method. We
compare the both methods in simulation and find that the BIC method, although it gives only an approximation of
the Bayes factor, is useful even when the sample size is not large, while the Chib’s method can be used only when
the sample size is large. In our simulation, when the sample size is 1000, the Chib’s method performs better than the
BIC’s method.
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