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Abstract

By a result of Pearce (1984), in a finite strategic form game, the set of a player's serially
undominated strategies coincides with her set of rationalizable strategies. In this note we
consider an extension of this result that applies to games with continuous utility functions
that are quasiconcave in own action. We prove that in such games, when the players are
endowed with compact, metrizable, and convex action spaces, a strategy of some player is
dominated by some other pure strategy if and only if it is not a best reply to any belief over
the strategies adopted by her opponents. For own-quasiconcave games, this can be used to
give a characterization of the set of rationalizable strategies, different from the one given by
Pearce. Moreover, expected utility functions defined on the mixed extension of a game are
always own-quasiconcave, and therefore the result in this note generalizes Pearce's
characterization to infinite games, by a simple shift of perspective.
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1. Introduction

The sets of serially undominated actions and of rationalizable actions of a game give rise
to two well known set-valued solution concepts on that game. Each of these notions singles
out a subset of actions for each player in a way that is justified by a certain reasoning
process, but the reasoning process behind either concept is different. Nevertheless, by a
celebrated result of Pearce (1984), in any finite strategic form game, the set of a player’s
serially undominated actions coincides with her set of rationalizable actions, provided the
players are expected utility maximizers. A recent paper by Zimper (2005) considered the
generalization of Pearce’s result to games with infinite strategy sets; Zimper elegantly proved
the equivalence of the sets of serially undominated actions and rationalizable actions, under
the conditions that each player’s action set is a compact subset of a metrizable space and
the best reply correspondences are upper-hemicontinuous.

This note further extends the results by Pearce, and essentially also those by Zimper. To
this end, we consider games with continuous utility functions that are quasiconcave in own
action. We prove that in such games, when players are endowed with compact, metrizable,
and convex action spaces, an action a of some player i is (strictly) dominated by some other
action if and only if it is not a best reply to any belief over the strategies adopted by her
opponents. Note that in this equivalence we ask whether there is a pure strategy available
to player i that dominates a. The mixed strategies of player i play no role. The notion of
dominance considered in this note is therefore subtly different from the one that is usually
considered in the literature, as an action is usually said to be dominated when there is a
mixed strategy available to the player which gives unambiguously higher expected utility.
As a consequence, our result can be used to prove that the set of each player’s serially
“purely”-undominated actions coincides with her set of rationalizable actions in games with
quasiconcave utility functions—a characterization of the set of rationalizable actions which
differs from the one given by Pearce.

There is, however, an intimate connection between the above characterization for own-
quasiconcave games and the usual one for games that are not necessarily quasiconcave in
own action, and in fact the latter can be obtained as a corollary. This is similar in spirit to a
result by Glicksberg (1952) on the existence of pure strategy Nash equilibria in games with
utility functions that are quasiconcave in own action. Glicksberg, and more recently, Alipran-
tis et al. (2006), proved the existence of pure strategy Nash equilibria for such games, by
generalizing Nash’s arguments that establish the existence of an equilibrium in mixed strate-
gies (Nash Jr, 1950) to games with such utility functions. For any compact metrizable joint
action set A, the expected utility function of a Von-Neumann expected utility maximizing
agent over the mixed extension of A is quasiconcave (indeed, linear). Nash’s original result
can be obtained by identifying the joint strategy space with the mixed extension of A. In
a similar vein, the conditions that utility functions are quasiconcave in own action and that
action sets are convex are stronger than the assumptions at the basis of Zimper’s results.
However, for games that do not satisfy these strong conditions, the usual equivalence of
serially undominated actions and rationalizable actions still follows, using the linearity of
the expected utility functions of Von-Neumann maximizing agents over the mixed extension
of the joint action set.

When Glicksberg used this type of argument to show his result implied the original theorem
of Nash, he implicitly assumed that the expected utility function is jointly continuous on
the mixed strategy extension of a game. Unfortunately, this is not at all obvious. Aliprantis

1



et al. explicitly proved this; we make use of this fact, and Lemma 2 in the appendix is an
immediate corollary of it.

The equivalence proof in Zimper (2005) revolves around an argument that makes use of a
generalized separating hyperplane theorem. In contrast, the proof below follows Pearce’s
original line of reasoning, by constructing a zero-sum two player game and proving it
has a saddle point using a minimax theorem. Specifically, we use the minimax theo-
rem for quasiconcave-quasiconvex functions due to Sion (1958). Interestingly, Sion’s min-
imax theorem is not proved using the separating hyperplane theorem, but using the well
known Knaster-Kuratowski-Mazurkiewicz fixed point theorem, which is in turn proved us-
ing Sperner’s lemma, a combinatorial result.

2. Main Result

We define a game in the standard way: N is a countable set of players, N−i denotes the set
N − {i}; for each i ∈ N , Ai is an action set and πi is a utility function πi : Ai × A−i → R

where, as usual, A−i is the set
∏

N−i
Aj. For any topological space S we write 4(S) for the

set of all probability measures on the Borel sets of S.

Take i ∈ N and let B−i ⊆ A−i. For our purposes, an action a∗ ∈ Ai will be called purely-
dominated given B−i (and for the given player i) if and only if there exists some ai ∈ Ai
such that for each a−i ∈ B−i, the inequality πi(a

∗, a−i) < π(ai, a−i) holds. The interpreta-
tion of this inequality is that the action ai is, in a quite unambiguous sense, better than a∗

when opponents choose actions from B−i. As explained in the introduction, this notion of
dominance differs from the usual one: usually one allows the dominating strategy ai to be a
“mixture”—that is, a point ai in 4(Ai) instead of Ai.

A point µ ∈ 4(A−i) is a probability measure over A−i and can be interpreted as a belief of
player i about the actions chosen by his opponents. For each fixed ai ∈ Ai, we can regard
πi(ai, a−i) as a continuous function πai

i on A−i. Given a point µ ∈ 4(A−i), we obtain the
expected value of π when choosing ai as:

π̃i(ai, µ) 7→
∫
πai
i dµ. (1)

In this case, π̃i(ai, µ) can be regarded as the utility of playing ai given the belief µ of a Von-
Neumann Morgenstern expected utility maximizing agent. For B−i ⊆ A−i, action a∗ ∈ Ai is
called a never-best-reply given B−i (for a given player i) if there is no µ ∈ 4(B−i) such that
the inequality π̃i(a

∗, µ) ≥ π̃i(ai, µ) holds for all ai ∈ Ai. The interpretation is that there is
no belief over i’s opponents’ joint action profiles in B−i that justifies choosing a∗.

Now consider any game satisfying the following additional assumptions (1)–(3) for each
i ∈ N :

(1) Ai is a compact, convex and metrizable topological space;
(2) πi : Ai × A−i → R is a bounded real valued function that is jointly continuous with

respect to the product topology;
(3) πi is quasiconcave on Ai for fixed a−i ∈ A−i.1

1Recall that a function f : S → R is called quasiconvex if for each real number c, the set {s ∈ S | f(s) ≤ c}
is convex; f is quasiconcave if −f is quasiconvex.
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In this case, we have the following lemma that connects the never-best-replies to the purely-
dominated actions.

Lemma 1. Take i ∈ N and for each j ∈ N−i, let Bj ⊆ Aj be compact. For player i, a∗ ∈ Ai
is purely-dominated given

∏
N−i

Bj if and only if it is a never-best-reply given
∏

N−i
Bj.

The proof of the statement appears in the appendix.

3. Serially Undominated Strategies and Rationalizability

Using the above notions of dominated actions and never-best-replies, the iterative solution
concepts of serially purely-undominated actions and rationalizable actions can be developed
in the standard way, as follows.2 Consider again any game satisfying the assumptions (1)–(3).
For each i ∈ N , suppose Bi ⊆ Ai and let Ui(

∏
N−i

Bj) be the set defined as:

Ai − {a ∈ Ai | a is purely-dominated for player i given
∏
N−i

Bj}. (2)

By a similar token let Ri(
∏

N−i
Bj) be the set:

Ai − {a ∈ Ai | a is a never-best-reply for player i given
∏
N−i

Bj}. (3)

Now recursively define U0
i = Ui(

∏
N−i

Aj) and Un
i = Ui(

∏
N−i

Un−1
j ) for all n ∈ N and each

i ∈ N . The set of i’s serially purely-undominated actions is the set
⋂
n∈N U

n
i —this is the set

that survives the elimination due to applying Ui at each step n ∈ N. Similarly, recursively
define R0

i = Ri(
∏

N−i
Aj) and Rn

i = Ri(
∏

N−i
Rn−1
j ) for all n ∈ N and each i ∈ N . The set

of i’s rationalizable actions is the set
⋂
n∈NR

n
i . The two sets are identical.

Theorem. For each player i ∈ N , the set of i’s serially purely-undominated actions and the
set of i’s rationalizable actions coincide.

4. Remarks

Lemma 1 holds for games with infinite, compact, convex, metrizable action sets and quasi-
concave utility functions. The conditions that utility functions are continuous, quasiconcave
in own action and that action sets are convex are a strengthening of the conditions in Zimper
(2005). However, for games with continuous utility functions, the results obtained above can
be seen to imply results similar to those of Zimper—which essentially mirrors the way Glicks-
berg (1952) extended Nash’s theorem.3 For each i ∈ N , let Ai be any compact, metrizable
set of actions, not necessarily convex. Furthermore, suppose each πi is jointly continuous on
Ai × A−i but not necessarily quasiconcave in own action. Then, by Lemma 2 in the appen-
dix, each πi is continuous on 4(Ai) × A−i. The set 4(Ai) is also metrizable and compact,
and moreover, convex; and expected utility is quasiconcave (indeed, linear) on 4(Ai) for
fixed a−i. Thus by identifying each player i’s strategy set with the set of mixed strategies
4(Ai) over Ai, we obtain strategy spaces and utility functions that satisfy all the stated
assumptions (1)–(3). The actions of the original game are embeddable in the strategy set

2As noted by Apt (2007), several other ways to define these solution concepts are found in the literature.
See the remarks in section 4.

3The assumption that the utility functions are continuous implies Zimper’s assumption that the best reply
correspondences are upper-hemicontinuous.
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4(Ai) and correspond to the pure strategies. Using this embedding, we may apply Lemma
1 to obtain the following result. An action ai ∈ Ai of the original game is dominated by
some α ∈ 4(Ai), that is, by some other (possibly mixed) strategy, if and only if it is a never-
best-reply among all the strategies in 4(Ai). And indeed, if ai is a never-best-reply among
all the strategies in 4(Ai), then—using the linearity of the expected utility function—it is a
never-best-reply among all the pure strategies in 4(Ai), viz., among the actions of the orig-
inal game, which lie embedded in 4(Ai). This result is just what is needed to develop the
usual equivalence of the set of rationalizable actions and serially undominated actions (as in
e.g. Osborne and Rubinstein (1994), proposition 62.1, and the proposition in Zimper (2005)).

By the definition of the operator Ri in expression (3), an action survives the elimination
procedure at stage n if it is a best reply in the original game (i.e. among Ai) to some belief
over the surviving strategies of the other players. In fact, this how the set of rationalizable
actions was originally defined by Bernheim (1984). In an alternative approach, considered
by Pearce (1984), an action survives elimination if it is a best reply among the remaining
actions of player i (i.e. among Rn−1

i ) to some belief over the surviving strategies of the other
players. The latter is a weaker condition, since the criterion for survival is that an action is
a best reply among a smaller set of competing actions. By a similar token, there is a strong
and a weak way to define the operator Ui. The various ways to define the operators Ui and
Ri, and the conditions under which the sets of serially undominated actions and rationaliz-
able actions are invariant under the definition adopted is investigated in Apt (2007). Indeed,
his results entail that the strong and weak approaches are equivalent for the kind of games
considered in this note.

Dominance by pure strategies seems to have first been considered by Börgers (1993), ap-
parently out of a mild dissatisfaction with some facets of the expected utility approach in
game theory. Börgers assumed preference relations on a (finite) set of possible outcomes
of a game and derived the utility functions πi from these relations; then he proceeded to
prove that an action a maximises the expected utility of player i under some belief µ for
some monotonic transformation of πi, if and only if a is not dominated by another action.
Thus, in this approach the utility function πi does not uniquely represent the utility of player
i. The implications of this are obviously quite different from those of Lemma 1 above. In
contrast, in this note we take the utility functions as primitives, under the assumption that
players maximize expected utility.

Appendix

Lemma 2. Let A and B be compact, metrizable topological spaces and f : A × B → R be
jointly continuous and bounded. For each fixed a ∈ A we may regard f as a continuous
function fa : B → R. Let f̃ : A×4(B)→ R be defined by:

f̃(a, µ) 7→
∫
fa dµ.

Endow 4(B) with the weak topology.4 Then f̃ is jointly continuous on A×4(B).

4 µn → µ in the weak topology if and only if
∫
f dµn →

∫
f dµ for any bounded continuous function f

(Aliprantis and Border (2006), p. 507).
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Proof. Endow both 4(A) and 4(B) with the weak topology. The product topology on
4(A) ×4(B) is metrizable (see Aliprantis and Border (2006), Theorem 15.11) and A can
be embedded into 4(A) through the mapping a 7→ δa, where δa is the point-mass on a
(Aliprantis and Border (2006), theorem 15.8). It suffices to show that if (an, µn) is a sequence
that converges to (a, µ), then

f̃(an, µn) :=

∫∫
f dδandµn →

∫∫
f dδadµ =

∫
fa dµ =: f̃(a, µ).

By a theorem of Aliprantis et al. (2006), the function
∫∫

f dµadµb is jointly continuous in
the product topology on 4(A) × 4(B). Recall that a sequence converges in the product
topology if and only if it converges pointwise. But δan to δa in 4(A) if and only if an → a
in A; so (δan , µn) converges pointwise to (δa, µ) on 4(A)×4(B) if and only if an → a and

µn → µ, that is, (an, µn) → (a, µ) pointwise. The continuity of f̃ in the product topology
on A×4(B) now follows from the theorem of Aliprantis et al. �

Proof of Lemma 1. Let B−i =
∏

N−i
Bj. The assumption that Ai and each Bj is compact

and metrizable together with N countable guarantees that Ai×B−i, when endowed with the
product topology, is also compact and metrizable. By assumption πi is bounded and jointly
continuous on Ai ×A−i and so also on the subspace Ai ×B−i (Armstrong (1983), Theorem
2.8). Apply lemma 2 to establish that π̃i is jointly continuous on A×4(B−i).

(⇒) Suppose a∗ is a never-best-reply given B−i. Following Pearce (1984), define the function:

u(ai, µ) := π̃i(ai, µ)− π̃i(a∗, µ)

Since π̃i(a
∗, µ) is a constant for each µ ∈ A−i, the function u is quasiconcave on Ai for fixed

µ. Since a∗ is a never-best-reply, for each µ ∈ 4(B−i), there exists an action ai 6= a∗ such
that u(ai, µ) > 0. We claim:

Claim 1. There is a point (â, µ̂) ∈ Ai×4(B−i) such that u(â, µ̂) = inf
µ∈4(B−i)

sup
a∈Ai

u(a, µ) > 0.

Proof of claim. For given µ ∈ 4(B−i), consider the problem:

max
a∈Ai

u(a, µ),

and let g(µ) := maxa∈Ai
u(a, µ) and φ(µ) := arg maxa∈Ai

u(a, µ) be the set of maximizers
of u for given µ. Since Ai is compact and u is continuous, by the Weierstrass theorem u
attains a maximum, thus g is a well defined function and, φ(µ) non-empty for each µ. As
u is continuous on Ai × 4(B−i), by the Maximum Theorem (Berge (1997), p. 116), g is a
continuous function. Since 4(B−i) is compact (see Aliprantis and Border (2006), Theorem
15.11), g attains a minimum on4(B−i). Let µ̂ be a point that minimizes g, and let â ∈ φ(µ).
Then u(â, µ̂) = inf

µ∈4(B−i)
sup
a∈Ai

u(a, µ). For each µ, there is some a such that u(a, µ) > 0, and

so u(â, µ̂) = g(µ̂) > 0. �

Claim 2. inf
µ∈4(B−i)

sup
a∈Ai

u(a, µ) = sup
a∈Ai

inf
µ∈4(B−i)

u(a, µ).

Proof of claim. Suppose to the contrary that for some c we have

sup
a∈Ai

inf
µ∈4(B−i)

u(a, µ) < c < inf
µ∈4(B−i)

sup
a∈Ai

u(a, µ). (4)
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First note that infa−i∈B−i
u(a, a−i) = infµ∈4(B−i) u(a, µ), due to the linearity of u on 4(B−i).

Hence:

sup
a∈Ai

inf
a−i∈B−i

u(a, a−i) < c if and only if sup
a∈Ai

inf
µ∈4(B−i)

u(a, µ) < c (5)

We will now derive a contradiction to the inequality (4). The derivation is based on Sion’s
minimax theorem (1958), with only very minor adaptations to the present framework.

For a−i ∈ B−i let Ya−i
:= {ai ∈ Ai | u(ai, a−i) < c}. These are open sets, and by (5) for

each ai ∈ Ai there is a a−i ∈ B−i such that u(ai, a−i) < c; so the Ya−i
’s are an open cover of

Ai. Ai is compact so there is a finite subcover. That is, there is a finite set Y ⊆ B−i such
that for each ai ∈ Ai, there exists y ∈ Y such that u(ai, y) < c. The finite set Y is closed in
B−i, and by theorem 15.19 in Aliprantis and Border (2006), 4(Y ) is a so called closed face
of 4(B−i), viz., the set 4(Y ) is the set of probability distributions with support in the finite
set Y , and 4(Y ) is compact. For ai ∈ Ai, let Xai

:= {µ ∈ 4(Y ) | u(ai, µ) > c}. By (4),
for each µ ∈ 4(B−i) there exists ai such that u(ai, µ) > c, so the Xai

’s cover 4(Y ). Since
4(Y ) is compact, we can choose a finite set X ⊆ Ai such that for each µ ∈ 4(Y ) we have
ai ∈ X such that u(ai, µ) > c.

For a set X ′ ⊆ Ai, denote the convex hull of X ′ by [X ′]. For fixed µ, u(ai, µ) is quasiconcave
in ai on [X ′] by assumption. For fixed ai and closed Y ′ ⊆ B−i, the set {µ ∈ 4(Y ′) : u(ai, µ) ≤
c} is convex, so u is quasiconvex on 4(Y ′) for fixed ai. Therefore lemmata 3.3 and 3.3′ in
Sion (1958) apply, and there exist finite subsets X∗ ⊆ X and Y ∗ ⊆ Y such that: (i) there
exists x∗ ∈ [X∗] such that u(x∗, y) < c for each y ∈ Y ∗—and by quasiconvexity of u on
4(Y ∗), u(x∗, µ) < c for each µ ∈ 4(Y ∗); (ii) there exists y∗ ∈ 4(Y ∗) such that u(ai, y

∗) > c
for each ai ∈ X∗—and by quasiconcavity, u(ai, y

∗) > c for each ai ∈ [X∗]. Thus we have
c < u(x∗, y∗) < c, an absurdity. �

By claim 1 and claim 2, there exists ai ∈ Ai such that u(ai, µ) > 0 for all µ ∈ 4(B−i), in
other words, the action ai purely-dominates a∗.

(⇐) If a∗ is purely-dominated given B−i, then a∗ is a never-best-reply to any a−i ∈ B−i, and
a fortiori a never-best-reply to any probability distribution over B−i. �

Proof of the Theorem. The theorem is proved by showing that for each n ∈ N and each
i ∈ N , the sets Un

i and Rn
i coincide. The argument is well-known; it can be found, for

instance, in Osborne and Rubinstein (1994) and also in Zimper (2005). The key is to prove,
using Lemma 1, that a ∈ Un

i if and only if a ∈ Rn
i . By the Lemma and the assumptions (1)–

(3), this claim is certainly true for n = 0. Moreover, we can apply the Lemma inductively,
provided we can show in addition that for each n > 0, the set Rn−1

i (and thus Un−1
i ) is

compact.
So let Bi ⊆ Ai be compact for all i ∈ N , pick i ∈ N , and let B−i =

∏
N−i

Bj. For each

µ ∈ 4(B−i), let φ(µ) := {a ∈ Ai | π̃i(a, µ) ≥ π̃i(ai, µ) for all ai ∈ Ai}. The set 4(B−i) is
compact if B−i is. By Berge’s maximum theorem, φ(µ) is non-empty and compact for each µ,
and φ is an upper-hemicontinuous correspondence. By lemma 17.8 in Aliprantis and Border
(2006), the set

⋃
µ∈4B−i

φ(µ) is compact. Now note that a ∈ φ(µ) for some µ ∈ 4(B−i) if

and only if a is not a never-best-reply given B−i, so
⋃
µ∈4B−i

φ(µ) = Ri(B−i). �
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