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1. Introduction

Mixed strategies are defined to be probability distributions over pure strategies, while be-
havioural strategies attach a probability distribution to the moves from each information set.
As we shall show below, in general there is no presumption that one type of strategy is superior,
in reaching the nodes of the tree, to the other.

In a classic paper by Kuhn (1953), a relation was established between mixed and behavioural
strategies for extensive form, finite games. It was shown that for games with at least two
choices from each node, there is an equivalence between behavioural and mixed strategies if and
only if the game is of perfect recall, i.e. such that no player forgets what he knew before. The
significance of this result is that for such games it suffices to consider only behavioural strategies.
This means that one can consider independently for every information set the probabilities
attached to the choices from each of its nodes.

In this paper we consider once more, and extend, this result1. Discussions in the literature
usually confine themselves either to the necessity part of Kuhn’s theorem or simply reference
his paper, explaining the significance of behavioural strategies.

Selten (1975) considers Kuhn’s result to be important and in his Theorem 1 proves a version
of the Kuhn’s Theorem relating strategies to equivalent behavioural strategy mixtures. We feel
that there is room for a further proof of the complete theorem. In this note, as in Ritzberger
(2002), Kuhn’s theorem is a consequence of combining two theorems, proofs of which are self
contained. The new proofs provided in this note employ induction over information sets using
the idea of an A-mixed strategy, a concept intermediate to behavioural and mixed strategies.

Furthermore we extend the investigation and show the superiority of mixed to behavioural
strategies if and only if the game is of type G, i.e. such that no path intersects any information
set more than at one node2. Games of perfect recall obviously satisfy this condition although
the converse is not necessarily true. Different types of games with imperfect recall. are discussed
by Osborne - Rubinstein (1994).

From the outset, in his Definition 2, Kuhn requires a game to have not more than one vertex
of an information set on any play of the game. So he does not address the relation between
behavioural and mixed strategies for games of type G, as we do in our Theorem 1.

2. Some Notation and Definitions

An extensive form game consists of

(i) A set P of players.

(ii) A tree T .

(iii) A map t from P to the non-terminal nodes N of T .
1After the completion and circulation of our work, it was pointed out to us that Ritzberger (2002) also proves

Kuhn’s theorem by combining two results. There is correspondence between his Theorem 3.2 and 3.3 and our
Theorem 1 and 2, although the proofs of the results are different. Ritzberger follows Kuhn closely whereas we apply
a mathematical induction on information sets. We believe that a Kuhn-type proof requires much mathematical
notation and presents some difficulty in following all algebraic steps.

2Violation of this condition is what Piccione - Rubinstein (1997) define as ‘absentmindedness’. Our use of the
term ‘game of type G’ corresponds to ‘no-absentmindedness’. Piccione - Rubinstein (1997) prove a result related
to Ritzberger’s Theorem 3.2 and our Theorem 1. It is their Proposition 1 and is attributed by them to Isbell
(1957).
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For any P ∈ P with N = t(P ), the immediate successors of N are the actions available to P
from N .
(iv) An equivalence relation ρ on N which is compatible with t and such that for N1ρN2 the
actions available from N1 and N2 are in 1-1 correspondence. An equivalence class is a set of
nodes owned by a single player which are indistinguishable for that player.
(v) For each terminal node a P-indexed vector giving the payoff to each player on termination
of the game at that node.

An information set, I, in a game tree is a set of non-terminal nodes belonging to a single
player, P , such that the moves, (choices, actions), from any two of these nodes are identical.
The intended interpretation of this concept is that the nodes of I are equivalent for P , in that
he cannot distinguish between them. Each of them appears identical in admitting the same
collection of possible choices.

Suppose a player, P , has k information sets I1, I2, . . . , Ik. We will assume that there is more
than one action available from any node of each Ii and denote the set of such actions available
from Ii by Σi and let Bi be the set of probability measures on Σi.

Let A ⊆ K = {1, 2, . . . , k}. An A-mixed strategy, (µ, b), is a probability distribution, µ, over

ΣA =
∏

i∈A

Σi

together with an independent element b ∈ ∏
j 6∈A Bj .

In particular a K-mixed strategy is called a mixed strategy and it is, essentially, a probability
distribution over ΣK which we write just as Σ; a ∅-mixed strategy is called a behavioural strategy
and we write B =

∏
j∈K Bj . A (directed) path connects in a unique manner the initial node of

the tree with a terminal node.

Note. There is an intended crucial difference of interpretation between the two parts of an
A-mixed strategy, (µ, b). The probabilities (given by µ) with which P will choose amongst the
moves from any node in an information set Ij : j ∈ A is determined before he enters that set:
once the actual move is decided upon, it will be used whenever P finds himself in that set. But
each time P finds himself within an information set Ij : j 6∈ A he will choose what move to make
according to the probability bj .

Two strategies, x, x′, employed by Player P , of any of the above sort are said to be equivalent if,
whatever strategies are adopted by the other players, the strategy profiles in which P employs
either x or x′ give the same probabilities of reaching each node of the tree. We will write this
equivalence as x ∼ x′.

For P , one set of strategies C is said to be superior to another set D if for all σ′ ∈ D there exists
σ ∈ C such that σ ∼ σ′.

Suppose a path intersects Ii1 , Ii2 , . . . , Iim of P ’s information sets, possibly with repeats and not
necessarily in that order, and requires move σiα to be made from Iiα . The probability that P
will make his moves on this path is

Pr(σi1 , . . . , σim) = Pr(σi1)× Pr(σi2 |σi1)× . . .× Pr(σim |σi1 , . . . σim−1). (1)

Note that generally we will use the notation Pr(σi1 , . . . , σim) for a marginal probability when
all the unmentioned events are summed out.

Suppose this is to be calculated for an A-mixed strategy (µ, b): we may assume w.l.o.g. that
only the first p indices, i1, i2, . . . , ip are in A. The factors from p + 1 to m are then independent
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and given by
m∏

j=p+1

bij (σij );

if p = m this will be taken to be 1.

However, the probability of events described by the first p terms together equal µ(σi1 , σi2 , . . . , σip),
which will be taken to be 1 if p = 0. Here we can have dependent behaviour. In particular, if
iα = iβ for α < β ≤ p then the βth factor is:

Pr(σiβ |σi1 , σi1 , . . . , σiβ−1
) =

{
0 if σiβ 6= σiα

1 if σiβ = σiα .
(2)

This distinction is only of significance if the game contains information sets which may be
intersected by a path in more than one node, a possibility which we wish to exclude here. We
thus make the following definitions:

Definition 1. A game is said to be of type G if no path intersects any information set in more
than one node.

In such games the players know that they are in an information set only once. If they find
themselves in an information set they know they have just entered it and that their next move
will take them out of it.

A player P is said to have perfect recall if: whenever a node ν1 in an information set I owned
by P is preceded by a node ν ′1 in an information set I ′ from which a move σ was made, and that
was the last move made by P , then every ν2 ∈ I is preceded by some ν ′2 ∈ I ′ from which the
move σ was made with no intervening moves by P .

Definition 2. A game is said to be of perfect recall if every player has perfect recall.

The intention of Definition 2 is that, if a player can recall all of his previous actions, he should
still not be able to distinguish between the nodes of an information set I2 by recalling how he
got to that set. All he will recall from any node of that set is the same sequence of previous
information sets and the moves he made from them.

The one-player game in Figure 1a shows why in Kuhn’s theorem the assumption of at least two
choices from each information set is needed. Namely in the case of Figure 1a we have equivalence
between mixed and behavioural strategies although we have imperfect recall.

Figure 1b is a well known example of absentmindednees, and makes the point that mixed
strategies need not be superior to behavioural strategies as it is the case for games with no-
absentmindednees. Furthermore one cannot deduce that behavioural strategies are superior to
mixed strategies, (see Glycopantis and Muir (1996)). The use of behavioural strategies implies
that node B can now be reached while it was not available under mixed strategies. On the other
hand it is impossible to reach nodes A, B, C with probabilities 1/2, 0, 1/2, using a behavioural
strategy, while the mixed strategy, (H, 1/2; V , 1/2) achieves this. It thus follows that neither
behavioural nor mixed strategies are superior.

It is evident that any game of perfect recall is a game of type G, but the converse is obviously
not true.
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3. Kuhn’s Equivalence

Kuhn (1953) proved that under conditions of perfect recall for every mixed strategy there exists
an equivalent behavioural strategy and that the converse is also true. Therefore it suffices to
consider only behavioural strategies which concentrate on information sets as they are reached.
Therefore the players act independently per information set and they do not to take into account
their previous or later decisions.

First we present an example to see how this equivalence works.

Example 1. Nature chooses N l, N r in the beginning with fixed probabilities. All other decisions
are made by a single player as shown in Figure 2. The game has perfect recall. The player’s
pure strategies are Ll, Lr, Rl, Rr and we consider the general mixed strategy where these
are played with corresponding probabilities π1, π2, π3, π4. We want to find equivalent
behavioural strategies by calculating the probabilities p1, p

′
1, p2, p

′
2 indicated on Figure 2 and

showing that p1 = p′1 and p2 = p′2. We denote the probability of reaching node x from node y
by Pr(x|y).

We have

p1 = Pr(i/a) = Pr(N l ∩R)/Pr(N l)

= Pr(N l)× Pr(R)/Pr(N l) = Pr(R)
= Pr(Rl) + Pr(Rr) = π3 + π4.

We also have

p′1 = Pr(j/b) = Pr(N r ∩R)/Pr(N r)
= Pr(N r)× Pr(R)/Pr(N r) = Pr(R) =
Pr(Rl) + Pr(Rr) = π3 + π4.
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Next

p2 =Pr(f |c) = Pr(N l ∩ L ∩ r)/Pr(N l ∩ L)

= Pr(N l)× Pr(L ∩ r)/[Pr(N l)× Pr(L)] = Pr(L ∩ r)/Pr(L)

= Pr(Lr)/[Pr(Ll) + Pr(Lr)] =
π2

π1 + π2
,

and finally

p′2 = Pr(h|d) = Pr(N r ∩ L ∩ r)/Pr(N r ∩ L)
= Pr(N r)× Pr(L ∩ r)/Pr(N r)× Pr(L)

= Pr(L ∩ r)/Pr(L) =
π2

π1 + π2
.

Throughout, Pr(N l), P r(N r), the probabilities of choice by nature, have been eliminated in the
calculations.

It is perfect recall which guarantees here that we can replace the mixed by behavioural strategies.

So we have established that there exist equivalent probability distributions on the choices of
the information sets I1 and I2. The question arises though about the property of independence
between the distributions across the information sets. Independence must mean that we can
choose these probabilities without reference to each other. On the other hand these distributions
must be chosen in the above specific manner if they are to be equivalent to given mixed strategies.

First we consider conditions under which a behavioural strategy can be replaced by a mixed
strategy.3

Theorem 1 A game is of type G if and only if, for any player, mixed strategies are superior to
behavioural strategies.

Theorem 2 A game is of perfect recall if and only if, for any player, behavioural strategies are
superior to mixed strategies.

Before embarking on the proof of these two theorems consider the path through any node ν of
the tree which involves moves

(σi1 , σi2 , . . . , σim) ∈ Σi1 × Σi2 × . . .× Σim

made by P . There will be some aggregate probability, π, for all the actions taken by the other
players on the path to ν. P acts independently so the total probability of reaching ν is

π × Pr{σi1 , σi2 , . . . , σim}, (3)

where the second factor is to be calculated from the strategy employed by P . Since, by the
definition of equivalence, all other players have fixed their chosen strategies (of whatever sort)
checking the equivalence of any two strategies which may be employed by P amounts to showing
the equality of the factor

Pr{σi1 , σi2 , . . . , σim}
for the two strategies.

The proof of the two theorems is based on an ordinary, finite induction the core of which
shows the equivalence between an Ar-mixed strategy and an Ar−1-mixed strategy. In proving

3After formulating and proving Theorem I we discovered that part of its statement is implicit in an exercise
in unpublished lecture notes by Binmore (1984).
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Theorem 1, we go from an Ar−1-mixed strategy to an equivalent Ar-mixed strategy, by removing
the behavioural status of one more information set and incorporating it into the mixed strategy
component. An analogous, but reversed, argument is used in proving Theorem 2. In each case
it must be shown that the given conditions allow any node of the tree to be reached with the
same probability by either strategy.

Let Ar = {1, 2, . . . , r} for r = 1, 2, . . . , k.

Proof of Theorem 1. Given b = (b1, b2, . . . , bk) ∈ B, consider the proposition

Qr
def= “There is an Ar-mixed strategy which is equivalent to b”.

Clearly we are trying to establish Qk. Q1 holds since b itself is an A1-mixed strategy, so we need
only show that Qr−1 implies Qr for r = 2, 3, . . . , k.

Consider an Ar−1-mixed strategy, (µ̂, b̂) where µ̂ is a probability distribution over ΣAr−1 and b̂ =
(br, br+1, . . . , bk) ∈

∏k
j=r Bj . We show that the probability distribution µ over ΣAr = ΣAr−1×Σr

given by the independent actions of µ̂ on ΣAr−1 and br on Σr, together with b = (br+1, . . . , bk) ∈∏k
j=r+1 Bj forms an equivalent Ar-mixed strategy (µ, b).

Suppose a path goes through Ii1 , Ii2 , . . . , Iim (not necessarily in that order) only the first p of
these indices being in Ar−1, that is ip < r. The probability Pr(σi1 , σi2 , . . . , σim) calculated by
the Ar−1-mixed strategy (µ̂, b̂) is

µ̂(σi1 , σi2 , . . . , σip)×
m∏

j=p+1

bij (σij ).

We consider the two cases:

Case I(a). If ip+1 6= r the marginal of µ̂ will be identical to that of µ since in both cases we
will get the marginal by summing over Σr.

Case I(b). If ip+1 = r, so that the path passes through Ir, the marginals µ̂(σi1 , σi2 , . . . , σip)
and µ(σi1 , σi2 , . . . , σip) will still be equal, since by hypothesis the game is of type G so Ir has
not yet been reached; furthermore

br(σr) = µ̂(σr|σi1 , σi2 , . . . , σip).

We now have:

µ(σi1 , σi2 , . . . , σip , σr)× b(σip+2 , σip+3 , . . . , σim)
= µ(σi1 , σi2 , . . . , σip)× µ(σr|σi1 , σi2 , . . . , σip)× b(σip+2 , σip+3 , . . . , σim)

= µ(σi1 , σi2 , . . . , σip)× br(σr)×
m∏

j=p+2

bij (σij )

= µ̂(σi1 , σi2 , . . . , σip)× b̂(σip+1 , . . . , σim).

(4)

Therefore the probability of the path reaching the specific node in Ir is the same under the
Ar−1-mixed and Ar-mixed strategies.

For the converse, we show that if a game is not of type G then the stated equivalence does not
hold. Suppose then that there is an information set I and a path which goes through I, first
at node ν1 and then at node ν2. Consider corresponding moves L, R from those nodes. In any
mixed strategy, we could not have move L made from ν1 and R made from ν2, whereas this is
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feasible in a behavioural strategy. We need only choose a behavioural strategy, b, in which the
probabilities of L and R are non-zero. Figure 1b shows such an example, with a slight change
in notation. This completes the proof of Theorem 1.

Proof of Theorem 2. Given a mixed strategy µ consider the proposition

Sq
def= “There is an Ak−q+1-mixed strategy which is equivalent to µ”.

We are trying to establish Sk. S1 holds since µ itself is an Ak-mixed strategy, so we need only
show that Sq implies Sq+1 for q = 1, 2, . . . , k; or, equivalently, that for any Ar-mixed strategy
there is an equivalent Ar−1-mixed strategy for r = 2, 3, . . . k.

Suppose we are given an Ar-mixed strategy (µ, b) with µ on ΣAr and b = (br+1, . . . , bk). We
wish to form an equivalent pair (µ̂, b̂) with µ̂ on ΣAr−1 and b̂ ∈ ∏k

j=r Bj .

Suppose a path goes through Ii1 , Ii2 , . . . , Iim (not necessarily in that order) only the first p of
these indices being in Ar, that is ip ≤ r. The probability Pr(σi1 , σi2 , . . . , σim) calculated by the
Ar−1-mixed strategy (µ̂, b̂) is

µ(σi1 , σi2 , . . . , σip)×
m∏

j=p+1

bij (σij ).

We consider the two cases:

Case II(a). Considering the possibility that a path might not pass through Ir, we see that µ̂
must be the marginal of µ got by summing over Σr and the components of b̂ in

∏k
j=r+1 Bj will

be identical with b. Which leaves only the construction of br. We can do this when consider a
path through Ir.

Case II(b). Consider a path to a node ν̂ which passes through Ii1 , Ii2 , . . . , Iim (in that order),
with ip = r. Let the path pass through node ν in Ir: then the probability of reaching ν̂ is the
probability of reaching ν̂ conditional on reaching ν times the probability of reaching ν, thus:

Pr(ν̂) = Pr(ν̂|ν)× Pr(ν).

P r(ν) arises from a path which does not involve Ir, since the assumption of perfect recall implies
that a path cannot intersect an information set twice, so that factor will be the same for both
the Ar-mixed strategy and the corresponding Ar−1-mixed strategy defined above.

Pr(ν̂|ν) may be re-written Pr(ν̂|ν̄) × Pr(ν̄|ν) where ν̄ is the next node reached from ν using
move σr from Ir. Now the first factor (which may be 1 if ν̂ = ν̄) is the same for the two strategies
since it only involves moves from information sets other than Ir. Theorem 2 is then completed
if we can set

br(σr) = Pr(ν̄|ν). (5)

This is the point at which the full power of the assumption of perfect recall is needed. In general
br(σr) might not be well-defined by equation (5): the right-hand-side depends not just upon the
move σr but upon the node ν from which that move was made. But we have

Pr(ν̄|ν) =
µ(σi1 , σi2 , . . . , σip−1 , σr)

µ(σi1 , σi2 , . . . , σip−1)
,

which is the same for any node of Ir since reaching such a node involves the same moves
σi1 , σi2 , . . . , σip−1 by P .
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We can now construct the analogue of relation (4) above

µ(σi1 , σi2 , . . . , σip−1 , σr=ip)× b(σip+1 , σip+3 , . . . , σim)
=µ(σi1 , σi2 , . . . , σip−1)× µ(σr|σi1 , σi2 , . . . , σip−1)× b(σip+1 , σip+3 , . . . , σim)

=µ̂(σi1 , σi2 , . . . , σip−1)× b̂(σip , . . . , σim).

(6)

Therefore the probability of the path reaching the specific node in Ir is the same under the Â-
and the A-mixed strategies.

To prove the converse consider two nodes ν1, ν2 in an information set I owned by P . Node ν1 is
preceded by node ν ′1 in an information set I ′ from which P ’s last move was σ1. We must consider
a number of ways in which a player might fail to have perfect recall. These are illustrated in
Figure 3 below. All information sets indicated belong to the same player. The interrupted lines
indicate that on the path to a node other players, apart from the specific one we are considering,
have also made decisions. Figure 3a is a general case of perfect recall.

Case 0. First we consider the case in which the game is not of type G. Then we can consider
strategies which make the game in Figure 1b relevant, for which we know that no behavioural
strategies are equivalent to certain mixed strategies.

Case 1. ν ′1 = ν ′2. This case is shown in Figure 3b. It is easy to show that for a particular
mixed strategy there is no equivalent behavioural strategy.

Pure strategies of player P are (σ1σ, σ1¬σ, σ2σ, σ2¬σ) and we assume that they are played with

respective probabilities (
1
3
,

1
3
,

1
3
, 0). This mixed strategy is not realisable by any behavioural

strategy.

Case 2. ν ′2 is in I ′ and this node is the last node owned by P on the path from ν ′2 to ν2, but
the move made from ν ′2 is σ2 6= σ1, (see Figure 3c). We construct a mixed strategy which does
not allow a consistent probability for the move σ from I.

Let the probabilities of moves from any information set other than I, I ′ be made independently
of those from I, I ′. We also choose that mixed strategy to have zero probability for any strategy
which uses a move from I ′ other than σ1, σ2. The probability of P ’s moves on the path to ν1

is µ(σ1) × π where π is the probability of P ’s moves on that path other than the move σ1.
The probability of P ’s moves on the path to ν̄1 is µ(σ1, σ) × π. Taking also into account the
independent probabilities of the other players, including nature, we can have µ(σ1) × π′1 +
µ(σ2)× π′2 = 1.

So
Pr(ν̄1|ν1) =

µ(σ1, σ)
µ(σ1)

.

Similarly

Pr(ν̄2|ν2) =
µ(σ2, σ)
µ(σ2)

.

Choose µ to have marginals

µ(σ1, σ) = µ(σ2, σ) = µ(σ1,¬σ) =
1
3
, µ(σ2,¬σ) = 0,
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where ¬σ is the event that σ is not used. Then

µ(σ1) = µ(σ1, σ) + µ(σ1,¬σ) =
2
3
,

µ(σ2) = µ(σ2, σ) + µ(σ2,¬σ) =
1
3
.

So Pr(ν̄1|ν1) = 1
2 and Pr(ν̄2|ν2) = 1. Thus there is no behavioural strategy giving a consistent

probability for the move σ from I.

Case 3. This is shown in Figure 3d. The node ν ′2 preceding ν2 in P ’s choices lies in an
information set I ′′ 6= I ′.

As in Case 2 we are comparing Pr(ν̄i|νi) for i = 1, 2.

We consider a mixed strategy for P , µ, in which probabilities of moves from any information set
other than I, I ′ and I ′′and are made independently of those from I, I ′ and I ′′.

Assume the marginals concerning moves from these information sets to be

µ(σ1, σ, σ2) = µ(σ1, σ,¬σ2) = µ(σ1,¬σ, σ2) =
1
3
,

with all others being zero.

Then we have
µ(σ1, σ) = µ(σ1, σ, σ2) + µ(σ1, σ,¬σ2) =

2
3

µ(σ1,¬σ) = µ(σ1,¬σ, σ2) + µ(σ1,¬σ,¬σ2) =
1
3

µ(σ, σ2) = µ(σ1, σ, σ2) + µ(¬σ1, σ, σ2) =
1
3
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B ≥ M

The relation between games of type G, games with perfect recall (PR) ,

and an interrupted arrow denotes lack of implication.
left-side is superior to the right-hand side. A solid arrow means implication

mixed (M) and behavioural strategies (B). The symbol ≥ means the

Figure 4

µ(¬σ, σ2) = µ(σ1,¬σ, σ2) + µ(¬σ1,¬σ, σ2) =
1
3
.

Hence
µ(σ1) = µ(σ1, σ) + µ(σ1,¬σ) = 1,

µ(σ2) = µ(σ, σ2) + µ(¬σ, σ2) =
2
3
.

It follows that

Pr(ν̄1|ν1) = 2
3 and Pr(ν̄2|ν2) = 1

2 . Thus there is no behavioural strategy giving a consistent
probability for the move σ from I.

This completes the proof of Theorem 2.

Since games of perfect recall are also games of type G, Theorems I and II combined together
imply

Theorem 3 (Kuhn’s theorem) A game is of perfect recall if and only if, for any player,
behavioural strategies and mixed strategies are equivalent.

The discussion above can be summarized in terms of Figure 4. It indicates the relation between
games with perfect recall (PR) or of type G and the possible superiority between mixed (M) and
behavioural strategies (B). It should be read as follows. Heavy arrows indicate that games with
PR imply (and are implied by) the superiority (≥) of B over M. Games with of type G imply
(and are implied by) the superiority (≥) of M over B. We also have that the superiority of B
over M implies the superiority of M over B.
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On the other hand the superiority of M over B does not imply the superiority of B over M. This
follows from the fact, shown by the one-player game in Figure 3b, that the superiority of M over
B does not imply that the game is of PR.

4. Concluding Remarks

In this note we consider again the famous, and widely applied, classic Kuhn theorem which
establishes that for extensive form, finite games with at least two choices from each node, there
is an equivalence between behavioural and mixed strategies if and only if the game is of perfect
recall, i.e. such that no player forgets what he knew before. The result is significant because it
implies that for such games it suffices to consider only behavioural strategies.

We prove Kuhn’s theorem by combining two results. In first, under no-absentmindness, mixed
strategies are superior to behavioural strategies, and in the second, under perfect recall, which
implies no-absentmindness, behavioural strategies are superior to mixed strategies. There is a
correspondence between our results and those in Ritzberger (2002). However the proofs are
different. Ritzberger follows Kuhn closely whereas we offer a new approach. We believe that a
Kuhn-type proof requires much mathematical notation and presents some difficulty in following
all algebraic steps. We prove the results by applying a mathematical induction argument on
information sets.
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