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1 Introduction

Arrow�s Theorem (Arrow (1951)) states that, when the domain and the codomain of
a binary decision rule (BDR) are the set of weak orders, and when the BDR is paretian
and satis�es the Independence of Irrelevant Alternatives (IIA) property, there exists a
player i0 such that, whenever i0 strictly prefers an option x to another option y, then the
collectivity also strictly prefers x to y. No information is given to the collective preference
when x and y are equivalent for i0 who is called the dictator. The aim of this note is to
characterize, as a consequence of the Arrow�s theorem, two subfamilies of arrovian BDRs
by strengthening the Pareto condition. The result obtained on strong paretian BDR is
also obtained by many other authors in di¤erent frameworks [see Fishburn (1974), Craven
(1992), Hild (2001), Xu (2003)].

2 Notations and de�nitions

Let N be a the �nite set of n voters and A a �nite set of m alternatives with n � 2
and m � 3. We will denote by B the set of binary relations on A; W (resp. WN)
the set of weak orders (transitive and complete binary relations ) on A (resp. the set
of pro�les of weak orders on A). Given a binary relation R on A and a subset fx; yg
of A , we write Rjfx;yg = xy if x is strictly preferred to y and Rjfx;yg = (xy) if the
indi¤erence holds between x and y. Moreover, given a subset fx; yg of A and two pro�les
RN and QN , �(x; y; RN) is the set of all voters who strictly prefer x to y; the notation
RN jfx;yg = QN jfx;yg stands for �(x; y; RN) = �(x; y;QN) and �(y; x;RN) = �(y; x;QN);
and

�
RS; QN�S

�
is the pro�le where preferences of voters in S are given by RS and

preferences of voters in N � S by QN�S. As usual, 2N is the set of all non empty subsets
of N .

De�nition 1 Let F be a BDR, that is a mapping F from WN to B.
(i) F satis�es Independence of Irrelevant Alternatives (IIA) if

8RN ; QN 2 WN , 8fx; yg � A : RN jfx;yg = QN jfx;yg =) F (RN)jfx;yg = F (RN)jfx;yg:
(ii) F is paretian if

8RN 2 WN ;8 fx; yg � A : �(x; y; RN) = N =) F (RN)jfx;yg = xy:
(iii) F is almost paretian if

8RN 2 WN ;8fx; yg � A : �(x; y; RN) = N =) F (RN)jfx;yg 2 fxy; (xy)g :
(iv) F is strongly paretian if 8RN 2 WN ;8 fx; yg � A :

(iv-a)
�
�(x; y; RN) 6= ; and �(y; x;RN) = ;

�
=) F (RN)jfx;yg = xy;

(iv-b) �(y; x;RN) = ; =) F (RN)jfx;yg 2 fxy; (xy)g :
(v) F is almost strongly paretian if

8RN 2 WN ;8 fx; yg � A : �(y; x;RN) = ; =) F (RN)jfx;yg 2 fxy; (xy)g :
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De�nition 2 Let F be a BDR.
(i) F is complete if 8RN 2 WN , F (RN) is complete.

(ii) F is transitive if 8RN 2 WN , F (RN) is transitive.

(iii) F is dictatorial if
9i0 2 N= 8RN 2 WN ;8 fx; yg � A : Ri0 jfx;yg = xy =) F (RN)jfx;yg = xy

(iv) F is strongly dictatorial if 9i0 2 N= 8RN 2 WN ; F (RN) = Ri0 :

(v) F is a lexicographic dictatorship of order q if there exists q distinct voters
i1; i2; :::; iq such that 8RN 2 WN ;8 fx; yg � A, 8k 2 f1; 2; ::; qg :
a)
�
Rik jfx;yg = xy and 8t < k;Ritjfx;yg = (xy)

�
=) F (RN)jfx;yg = xy;

b) Rik jfx;yg = (xy) ; 8k < q =) F (RN)jfx;yg = Rqjfx;yg.
For k 2 f1; 2; ::; qg, ik will then be called the dictator of order k for F and the decisive

dictator for F given S 2 2N is the dictator for F in S with the smallest order.
(vi) F is a lexicographic dictatorship if F is a lexicographic dictatorship of order n.

(vii) F is null if 8RN 2 WN ;8 fx; yg � A : F (RN)jfx;yg = (xy).
When F is null, F will be called a lexicographic dictatorship of order q = 0.

3 The main result

Let us recall the well-known Arrow�s Theorem :

Theorem 1 (Arrow 1951) If F is paretian, IIA, transitive and complete then F is
dictatorial.

We use theorem 1 to establish the following :

Theorem 2 F is strongly paretian, IIA, transitive and complete if and only if F is a
lexicographic dictatorship.

Proof. (a) Su¢ ciency. Let F be a lexicographic dictatorship.

(a1) Completeness. Let RN 2 LN and fx; yg � A. Suppose that �(x; y; RN) [
�(y; x;RN) = ;. Then Rijfx;yg = (xy) for all i 2 N . By de�nition of a lexicographic
dictatorship, F

�
RN
�
jfx;yg = (xy). Now suppose that �(x; y; RN)[�(y; x;RN) 6= ; and let

ip be the decisive dictator for F given �(x; y; RN)[ �(y; x;RN). Then F jfx;yg = Rip jfx;yg.
Since Rip 2 W , F is complete.
(a2) IIA. Let RN ; QN 2 LN and fx; yg � A such that RN jfx;yg = QN jfx;yg. Sup-

pose that �(x; y; RN) [ �(y; x;RN) = ;. Then F
�
RN
�
jfx;yg = (xy). Since RN jfx;yg =

QN jfx;yg, �(x; y;QN) [ �(y; x;QN) = ;. Hence F
�
QN
�
jfx;yg = (xy). Now suppose that

�(x; y; RN)[ �(y; x;RN) 6= ; and let ip be the decisive dictator for F given �(x; y; RN)[
�(y; x;RN). Then F

�
RN
�
jfx;yg = Rip jfx;yg. Since RN jfx;yg = QN jfx;yg, �(x; y;QN) [
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�(y; x;QN) 6= ; and ip is also the decisive dictator for F given �(x; y;QN) [ �(y; x;QN).
Hence F

�
QN
�
jfx;yg = Qip jfx;yg. Therefore F

�
RN
�
jfx;yg = F

�
QN
�
jfx;yg.

(a3) Transitivity. Let RN 2 LN and fx; y; zg � A.
(a3-1) Suppose that F

�
RN
�
jfx;yg = (xy) and F

�
RN
�
jfy;zg = (yz). Then by the

de�nition of a lexicographic dictatorship, Rijfx;yg = (xy) and Rijfy;zg = (yz) for all
i 2 N . By transitivity of individual preferences, Rijfx;zg = (xz) for all i 2 N . Hence
F
�
RN
�
jfx;zg = (xz).

(a3-2) Suppose that F
�
RN
�
jfx;yg = (xy) and F

�
RN
�
jfy;zg = yz. Since F is a

lexicographic dictatorship, Rijfx;yg = (xy) for all i 2 N and �(y; z; RN) 6= ;. By transi-
tivity, �(y; z; RN) = �(x; z; RN) and �(z; y; RN) = �(z; x; RN). Since F

�
RN
�
jfy;zg = yz,

the decisive dictator for F given �(y; z; RN) [ �(z; y; RN) belongs to �(y; z; RN). Hence
the decisive dictator for F given �(x; z; RN) [ �(z; x; RN) belongs to �(x; z; RN). Thus
F
�
RN
�
jfx;zg = xz.

(a3-3) Suppose that F
�
RN
�
jfx;yg = xy and F

�
RN
�
jfy;zg = (yz). Since F is a lexi-

cographic dictatorship, Rijfy;zg = (yz) for all i 2 N and �(x; y; RN) 6= ;. By transitivity,
�(x; z; RN) = �(x; y; RN) and �(z; x;RN) = �(y; x;RN). Since F

�
RN
�
jfx;yg = xy, the

decisive dictator for F given �(x; y; RN) [ �(y; x;RN) belongs to �(x; y; RN). Hence
the decisive dictator for F given �(x; z; RN) [ �(z; x;RN) belongs to �(x; z; RN). Thus
F
�
RN
�
jfx;zg = xz.

(a3-4) Suppose that F
�
RN
�
jfx;yg = xy and F

�
RN
�
jfy;zg = yz. Let ip and iq

be respectively the decisive dictator for F given �(x; y; RN) [ �(y; x;RN) and given
�(y; z; RN) [ �(z; y; RN). Then ip 2 �(x; y; RN) and iq 2 �(y; z; RN). Consider ik a dic-
tator for F the order of which is k. Suppose that k < p and k < q. Then Rik jfx;yg = (xy)
and Rik jfy;zg = (yz). By transitivity Rik jfx;zg = (xz). Now suppose that p � q. Then
Rip jfy;zg = yz for p = q or Rip jfy;zg = (yz) for p < q. Hence Rip jfx;zg = xz and ip is the
dictator for F given �(x; z; RN)[�(z; x; RN). Similarly if p > q then Riq jfy;zg = yz and iq
is the decisive dictator given �(x; z; RN)[ �(z; x; RN). In both cases, F

�
RN
�
jfx;zg = xz.

Clearly, F
�
RN
�
is transitive.

(a4) Strongly Paretian. Consider a pro�le RN and fx; yg � A.
(a4-1) Suppose that there exists S 2 2N such that �(x; y; RN) = S and �(y; x;RN) =

;. Then the decisive dictator for F given �(x; y; RN)[�(y; x;RN) belongs to �(x; y; RN).
Therefore F

�
RN
�
jfy;zg = xy.

(a4-2) Suppose that F
�
RN
�
jfx;yg = xy. By the de�nition of F the decisive dictator

for F given �(x; y; RN) [ �(y; x;RN) belongs to �(x; y; RN). Therefore �(x; y; RN) 6= ;.
(b) Necessity. Conversely let F be a strongly paretian, IIA, transitive and complete BDR.
(b1) Since F is strongly paretian, F is paretian and thus F is paretian, IIA, transitive

and complete. By Theorem 1, F is dictatorial. Hereafter the dictator of F is denoted
by i. Let N1 = N � fi1g and de�ne the BDR F1 on WN1 by F1

�
RN1

�
= F

�
Ifi1g; RN1

�
.

There is no di¢ culty to observe that F1 is strongly paretian, IIA, transitive and complete.
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F1 is therefore paretian, IIA, transitive and complete. By Theorem 1, F1 is dictatorial
and the dictator for F2 is denoted i2.
(b2) Suppose that there exists q voters i1, i2, ..., iq with q < n such that i1 is

the dictator for F and for all k 2 f2; :::; qg, ik is the dictator for Fk�1 where for all
k 2 f1; 2; :::; qg, Fk is the BDR de�ned on WNk by Fk

�
RNk

�
= F

�
Ifi1;i2;:::;ikg; RNk

�
with

Nk = N � fi1; i2; :::; ikg. Since F is strongly paretian, IIA, transitive and complete on
WN , it is easy to observe that Fq is strongly paretian, IIA, transitive and complete on
WNq . By Theorem 1, Fq is dictatorial and the dictator for Fq is denoted by iq+1.
(b3) After n iterations described at (b1) and (b2), F is a lexicographic dictatorship.

Theorem 3 (Arrow bis) If F is almost paretian, IIA, transitive and complete then F
is either dictatorial or null.

Proof. Let F be an almost paretian, IIA, transitive and complete BDR.

Case 1 : Suppose that F is paretian. Then by theorem 1 F is dictatorial.

Case 2 : Suppose that F is not paretian. Then there exists RN 2 LN and fx; yg � A
such that �

�
x; y; RN

�
= N and F

�
RN
�
jfx;yg 6= xy. Since F is complete and al-

most paretian, F
�
RN
�
jfx;yg = (xy). Now given QN and z 2 An fxg, let prove that

F
�
QN
�
jfx;zg = (xz).

(a) Let prove that for all pro�le QN and z 2 An fxg such that �
�
x; z; RN

�
= N ,

F
�
QN
�
jfx;yg = (xy) holds. Suppose that z = y. Then RN jfx;yg = QN jfx;yg and by

IIA, F
�
QN
�
jfx;yg = (xy). Now suppose that z 2 An fx; yg. Consider a pro�le RN1 at

which for all voters, x is the most preferred alternative, z is the second best and y is
the third best. Then by transitivity of individual preferences, x is strictly preferred to
y by all voters. Therefore RN jfx;yg = RN1 jfx;yg and by IIA, F

�
RN1
�
jfx;yg = (xy). Also

observe that F is almost paretian, �
�
x; z; RN1

�
= N and �

�
z; y; RN1

�
= N . Consequently

F
�
RN1
�
jfx;zg 6= zx and F

�
RN1
�
jfz;yg 6= yz. By transitivity of F , F

�
RN1
�
jfz;yg = (yz) and

F
�
RN1
�
jfx;zg = (zx). Since QN jfx;zg = RN1 jfx;zg and F is IIA, then F

�
QN
�
jfx;zg = (zx).

(b) Since at (a) above, �
�
z; y; RN1

�
= N and F

�
RN1
�
jfz;yg = (yz), then by IIA, for

all pro�le QN and z 2 An fx; yg such that �
�
z; y; RN

�
= N , F

�
QN
�
jfz;yg = (zy) holds.

(c) Let prove that for all pro�le QN and z 2 An fx; yg such that �
�
y; z; RN

�
= N ,

F
�
QN
�
jfz;yg = (zy) holds. Consider a pro�le RN2 at which for all voters, x is the most

preferred alternative and y is the second best alternative. Then RN jfx;yg = RN2 jfx;yg
and by IIA, F

�
RN2
�
jfx;yg = (xy). Also observe that RN1 jfx;zg = RN2 jfx;zg. Thus by IIA,

F
�
RN2
�
jfz;xg = (xz). Since F is transitive, F

�
RN2
�
jfz;yg = (yz). But QN jfy;zg = RN2 jfy;zg.

Therefore by IIA, F
�
QN
�
jfy;zg = (yz).

(d) Let prove that for all pro�le QN and z 2 An fxg, F
�
QN
�
jfz;xg = (zx) holds. Just

consider a pro�le RN3 at which for all voter i : x and z are ranked according to Q
i and are

strictly preferred to any other alternative in An fx; zg.
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(d-1) Suppose that z 2 An fx; yg. Then note that �
�
x; y; RN3

�
= N and �

�
z; y; RN3

�
=

N . Then by stages (a) and (b) above, F
�
RN3
�
jfy;xg = (yx) and F

�
RN3
�
jfz;yg = (zy).

Since F is transitive, F
�
RN3
�
jfx;zg = (xz). But QN jfx;zg = RN3 jfz;xg. Therefore by IIA,

F
�
QN
�
jfz;xg = (zx).

(d-2) Suppose that z = y and consider t 2 An fx; yg. Then observe that �
�
x; t; RN3

�
=

N and �
�
y; t; RN3

�
= N . Then by stages (a) and (c) in the present proof, F

�
RN3
�
jft;xg =

(tx) and F
�
RN3
�
jft;yg = (ty). Since F is transitive, F

�
RN3
�
jfx;zg = (xz). But QN jfx;zg =

RN3 jfz;xg. Therefore by IIA, F
�
QN
�
jfz;xg = (zx).

To conclude, consider a pro�leQN and fa; bg � A. First suppose that x 2 fa; bg. Then
by stage (d), F

�
QN
�
jfa;bg = (ab). Now suppose that x =2 fa; bg. Then by stage (d),

F
�
QN
�
jfa;xg = (ax) and F

�
QN
�
jfb;xg = (bx). By transitivity of F , F

�
QN
�
jfb;ag = (ba).

As conslusion in case 2, F is null.

Theorem 4 F is almost strongly paretian, IIA, transitive and complete if and only if F
is either null or there exists q � n such that F is a lexicographic dictatorship of order q.

Proof. (i) Su¢ ciency. It is obvious that lexicographic dictatorships of any order q are
almost strongly paretian, IIA, transitive and complete BDRs.

(ii) Necessity. Conversely let F be an almost strongly paretian, IIA, transitive and
complete BDR.

(ii1) Since F is almost strongly paretian , F is almost paretian and thus F is almost
paretian, IIA, transitive and complete. By the Theorem 3, F is either null or F is
dictatorial.

If F is null, the proof ends and F is lexicographic dictatorship of order q = 0. Oth-
erwise F is dictatorial and its dictator is denoted by i1. Let N1 = N � fi1g and de�ne
the BDR F1 on WN1 by F1

�
RN1

�
= F

�
Ifi1g; RN1

�
. It is easy to prove that F1 is almost

strongly paretian, IIA, transitive and complete. F1 is therefore almost paretian, IIA, tran-
sitive and complete. By Theorem 3, F1 is either null or F1 is dictatorial and its dictator
is denoted i2.

If F1 is null, F is lexicographic dictatorship of order 1 and the proof ends. Otherwise
F2 is dictatorial and its dictator is denoted by i2.

(ii2) Suppose that there exists q voters i1, i2, ..., iq with q < n such that i1 is the
dictator of F and for all k 2 f2; :::; qg, ik is the dictator of Fk�1 where for all k 2
f1; 2; :::; qg, Fk is the BDR de�ned on WNk by Fk

�
RNk

�
= F

�
Ifi1;i2;:::;ikg; RNk

�
with

Nk = N�fi1; i2; :::; ikg. Since F is almost strongly paretian, IIA, transitive and complete
on WN , it is easy to observe that Fq is almost strongly paretian, IIA, transitive and
complete on WNq . By Theorem 3, Fq is either null or dictatorial.

If Fq is null, F is a lexicographic dictatorship of order q and the proof ends. Otherwise
Fq is dictatorial and its dictator is denoted by iq+1.
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(ii3) By at most n iterations described at (ii1) and (ii2), F is null or is a lexicographic
dictatorship of some order q with 0 � q � n.
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