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Abstract 

In a recent paper Ganguli/Yang (2009) demonstrate, that there can exist multiple equilibria in a financial market model 
a' la Grossman/Stiglitz (1980) if traders possess private information regarding the supply of the risky asset. The 
additional equilibria differ in some important respects from the usual equilibrium of the Grossman-Stiglitz type which 
still exists in this model. This note shows that these additional equilibria are always unstable under eductive learning 
(cf. Guesnerie (2002)) and adaptive learning via least-squares estimation (cf. Marcet/Sargent (1988) or 
Evans/Honkapohja (2001)). Regarding the original Grossman-Stiglitz type equilibrium, the stability results are less 
clear cut, since this equilibrium might be unstable under eductive learning while it is always stable under adaptive 
learning.
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1 Introduction

In a recent paperGanguli and Yang(2009) demonstrate, that there can exist multiple equi-
libria in a financial market model á laGrossman and Stiglitz(1980) if traders possess private
information regarding the supply of the risky asset. The informational properties of the ad-
ditional equilibria differ from the usual Grossman–Stiglitz like equilibrium which still exists
in this model.

As usual in case of multiple equilibria, the question ariseswhether or not there exists a
plausible selection device which implies that traders indeed coordinate on these additional
equilibria. One important selection device asks whether ornot a specific equilibrium is
stable under learning. Discussing this briefly,Ganguli and Yang(2009) note that the static
setup of their model doesn’t allow for such an analysis as learning processes are inherently
dynamic.

This, however, is not entirely correct. Not only do there exist concepts of learning that
are applicable to static models. It is moreover possible to put the model ofGanguli and Yang
(2009) into a framework which makes it possible to analyse real-time adaptive learning
processes. Using the concepts of ’eductive learning’ tracing back toGuesnerie(2002)
and adaptive learning via least–squares estimation following Marcet and Sargent(1988)
or Evans and Honkapohja(2001) it is shown that the additional equilibria described by
Ganguli and Yang(2009) are always unstable under learning.Thus, the strict use of sta-
bility under these two learning procedures as a selection device would always eliminate
these additional equilibria. From a more general perspective, instability of the additional
equilibria under these two types of learning procedures gives at least rise to some doubts
regarding their plausibility, because we can not take it forgranted that traders will coordi-
nate on these equilibria or learn to form corresponding expectations.Regarding the original
Grossman–Stiglitz type equilibrium, we get no clear cut stability results, since this equi-
librium might be unstable under eductive learning while it is always stable under adaptive
learning.

Before proceeding with the analysis, a remark is necessary.The following analysis
assumes that the amount of private information on the side ofthe traders is exogenously
given, whereasGanguli and Yang(2009) analyze a model where traders buy this information
at a cost.1 However, as will be argued in Section4, the results regarding instability under
learning derived from the model with exogenous private information carry over to this case.

2 A financial market model with supply information

There is a continuum of tradersi ∈ I = [0,1] and each trader is endowed with ¯x units of
the riskless asset and ¯z(i) units of a risky asset. The riskless asset yields 1 unit, the risky
assetβ units of a single consumption good, whereβ is unknown and drawn from a normal

1With respect to the acquisition of private information theyin fact analyze two different versions of the
model.



distribution with mean̄β and precisionτ. Traders possess private information regarding
the return of the risky asset, but since aggregate supply of the stock is stochastic too, the
REE price of the asset will not be fully revealing. Each trader observes a private signal
s(i) = β + u(i) that informs aboutβ. Hereu(i) is for all i an independent and normally
distributed random variable with zero mean and precisionτu. The endowment of a trader
with the risky asset is given by ¯z(i) = z̄ + ε + η(i), whereη(i) is an idiosyncratic shock,
which is normally distributed with zero mean and precisionτη. The common shockε to the
aggregate supply of the stock is also normally distributed with zero mean and precisionτε.2

Using the riskless asset as numeraire and withp denoting the price of the risky asset as
well aszi denoting the demand of the risky asset of traderi, his final wealthW1,i is:

W (i) = x̄+ p z̄(i)+ z(i) [β− p]

Each trader maximizes the expected utility of his final wealthW (i), where the utility function
exhibits constant absolute risk aversion 0< γ < ∞ for all i∈ I. A trader’s asset demandz(i) in
this model is conditioned on his private signals(i) regarding the asset return, his information
regarding the aggregate supply of the stock contained in ¯z(i) as well as the current asset price
p. Optimal asset demand of traderi then results as:

z(i)∗ =
1

γ Var[β |s(i), p, z̄(i)]

[

E[β |s(i), p, z̄(i)]− p
]

From the assumptions made above it then follows thatthe model exhibits a linear rational
expectations equilibrium.3 In particular this means:

Proposition 1 If τu τη
γ2 <

1
4 then there exist two rational expectations equilibria in which

asset demand z∗(i) of trader i observing the signal s(i), his endowment z̄(i) and the current
price p is given by the linear function z(i)∗ = δ∗0 + δ∗1s(i)+ δ∗2 p+ δ∗3 z̄(i), where

δ∗0 =
(1−δ∗3)

[

(1−δ∗3) β̄ τ+ δ∗1τε z̄
]

(1−δ∗3)2γ+ δ∗1(τη + τε)
(1a)

δ∗1 =
τu

γ
(1b)

δ∗2 = −
δ∗1

2(τε + τη)+ (1−δ∗3)2(τ+ τu)

(1−δ∗3)2 γ+ δ∗1(τη + τε)
(1c)

δ∗3 =
δ∗1 τη

γ(1−δ∗3)
(1d)

Proof. See Proposition 1 ofGanguli and Yang(2009). �

2As the model used here is one, where all traders possess private information, this model is closer in spirit
to Diamond and Verrecchia(1981) than toGrossman and Stiglitz(1980). However, with respect to the stability
analysis this difference is of minor importance.

3A usual question is whether there exist nonlinear equilibria besides the linear equilibria described below.
SeeVives(1993) for a suitable set of additional assumptions that allow to prove uniqueness of linear equilibria.
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Multiple equilibria arise from the quadratic equation (1d). If τu τη
γ2 <

1
4 this equation

exhibits two real solutions, henceforth denotedδ∗3,I andδ∗3,II :

δ∗3,I =
1
2
−

√

1
4
−

τu τη

γ2 , δ∗3,II =
1
2

+

√

1
4
−

τu τη

γ2 (2a)

As (1b) reveals,δ∗1 is unique across these equilibria, whileδ∗0 andδ∗2 are not. Thus, ifτu τη
γ2 <

1
4

we end up with two rational expectations equilibria characterized by∆I = (δ∗0,I , δ∗1, δ∗2,I , δ∗3,I)

and∆II = (δ∗0,II , δ∗1, δ∗2,II , δ∗3,II). ∆I is denoted the Grossman–Stiglitz like equilibrium as the
properties of this REE are similar to the one of theGrossman and Stiglitz(1980) model.

2.1 The T–map

In what follows, the analysis of learning processes, eithereductive or adaptive, will be
conducted with the help of the so called T–map. This T–map describes how parameters of a
linear decision rule followed by the agents change with the passage of (virtual or real) time
due to learning. This T–map is extensively used in the analysis of adaptive learning processes
following the approaches ofMarcet and Sargent(1988) andEvans and Honkapohja(2001).
In the present context, this T–map turns out to coincide withthe best response mapping
defined in the following Proposition.

Proposition 2 If asset demand z(i) of all traders i is linear in s(i), p and z̄(i) and given
by z(i) = δ0 + δ1s(i)+ δ2 p + δ3 z̄(i), the best response of any trader j ∈ I is also a linear
function z( j)∗ = δ′0 + δ′1s( j)+ δ′2 p+ δ′3 z̄( j) , where

δ′0 =
(1−δ3)

2 β̄ τ−δ1 [δ0(τε + τη)− (1−δ3)τε z̄]
γ(1−δ3)2 (3a)

δ′1 =
τu

γ
(3b)

δ′2 =
(1−δ3)

2(τ+ τu)+ δ1(δ1 + δ2)(τε + τη)

γ(1−δ3)2 (3c)

δ′3 =
δ1 τη

γ(1−δ3)
(3d)

Proof. See Appendix. �

With δ′ = (δ′0 . . . ,δ′3)′ andδ = (δ0, . . . ,δ3)
′ equations (3a)–(3d) give rise to the so called

T-map which is central to the analysis of learning processes:

δ′ = Tδ(δ) (4)

Obviously, the above described REE∆I and∆II are fixed points of this T–map.
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2.2 Eductive learning

The concept of a strongly rational expectations equilibrium (SREE) asks, whether a spe-
cific REE can be ’educed’ by agents assuming nothing more thanindividual rationality and
common knowledge.4 The idea is that agents will not follow strategies that are not best
responses to other agent’s strategies. Thus, in a way analogous to the concept of a rational-
izable Nash–equilibrium, non–best responses can be eliminated from the agent’s strategy
sets. A REE is eductively stable or a SREE, whenever the REE isthe unique outcome of
this process.Guesnerie(2002) provides a comprehensive description of this concept and
the reader is referred to this reference for details.

Regarding the proof of eductive stability, the essential point is that this proof obviously
depends on the properties of the best response mapping. A REEis eductively stable if and
only if this REE turns out to be a locally stable stationary point of the best response mapping.
As this best response mapping coincides with the T–map, eductive stability requires that all
eigenvalues of the Jacobian of the T–map (4) evaluated at the specific REE are less than one
in absolute value. Now, from (3a)–(3d) and using (1b) we get that the eigenvaluesλ1, . . . ,λ4

of the T–map are given by:

λ1 = 0, λ2 =
τu τη

(1−δ∗3)2 γ2 , λ3 = λ4 = −λ2−
τu τε

(1−δ∗3)2 γ2 (5)

(1d) implies (1− δ∗3) =
τu τη
γ2 δ∗3

and soλ2 becomesλ2 =
γ2 δ∗3

2

τu τη
. Together with (2a) we then

get thatλ2 is non negative and always greater than one in case of the∆II–REE and always
smaller than one in case of the∆I–REE. While this implies that the∆II–REE is never a
SREE, it does not imply that the∆I–REE is always eductively stable. As (5) reveals, 0<
λ2 < 1 doesn’t rule out that the remaining two eigenvaluesλ3 and λ4 are smaller than
−1. This simply repeats an already known result (cf.Desgranges and Heinemann(2003))
according to which the unique REE of the original Grossman–Stiglitz model is not always
a SREE. Some computations show that a sufficient condition for eductive stability of the
Grossman–Stiglitz like∆I–REE isτu < τη.

3 Stability under adaptive learning

In order to analyze the stability of the two above described REE under adaptive learning
it is necessary to embed the hitherto static model into a dynamic framework such it is at
all possible to analyze real time learning processes. Thus,from now on it is assumed that
the just described static model is repeated over a long horizon. In each periodt, two ex
ante unobserved random variables ¯zt andβt realize and traders observe their private signals
s(i)t = βt + u(i)t as well as ¯z(i)t = z̄t + εt + η(i)t . Individual asset demand depends on an
estimatorβ̂(i)t of the unknown asset as well as an estimator for its variance Var[β̂](i)t based
on data available up to timet. At the end of every period, agents then revise their estimates

4The terms ’strongly rational expectations equilibrium’ and ’eductively stable equilibrium’ can be used
interchangeable.
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β̂(i) and Var[β̂](i) in the light of new data, consisting of the endogenous variable pt and
their private signalss(i)t andz̄(i)t as well as the ex post observed realizations ¯zt andβt . The
recursive estimation is done using recursive least squares.

Estimation of the equation

β = α0 + α1s(i)+ α2 p+ α3 z̄(i) ,

by traderi using data up to timet then leads to an estimatorβ̂(i)t+1 for β given byβ̂(i)t+1 =

y(i)′t+1α̂(i)t+1, wherey(i)t = (1,s(i)t , pt , z̄(i)t)
′, α(i)t = (α(i)0,t , . . . ,α(i)3,t)

′ and

α̂(i)t+1 = α̂(i)t +
1
t

R(i)−1
t y(i)t

(

βt − y(i)′t α̂(i)t
)

(6a)

R(i)t+1 = R(i)t +
1
t

(

y(i)t y(i)′t −R(i)t
)

(6b)

An estimator ˆv(i) for the variance results as

v̂(i)t+1 = v̂(i)t +
1
t

(

[βt − y(i)′t α̂(i)t ]
2− v(i)t

)

(6c)

Given these estimates, asset demand of traderi in periodt is given by:

z(i)t =
β̂(i)t − pt

γ Var[β̂](i)t

=
1

γ v̂(i)t

(

α̂(i)0,t + α̂(i)1,t s(i)t +(α̂(i)2,t −1) pt + α̂(i)3,t z̄(i)t
)

, (7)

Equation (7) is again linear ins(i), p and z̄(i) and the question now is, whether adaptive
learning implies that the coefficients of this linear demandfunction converge against their
REE counterparts∆I or ∆II . With respect to this, it turns out that the asymptotic proper-
ties of the adaptive learning process are again characterized by the properties of the above
described T–map (seeHeinemann(2009) for details). Using the stochastic approximation
tools described byEvans and Honkapohja(2001), it can be shown (see AppendixA.2 for
details) that the asymptotic dynamics of the learning algorithm are governed by a system of
ordinary differential equations, which is given by:

(

α̇
v̇

)

=

(

Tα(α, v)−α
Tv(α, v)− v

)

(8)

Thus, a REE of the model is stable under adaptive learning whenever the eigenvalues of
Jacobian of(Tα,Tv) evaluated at an REE are smaller than one (implying that the eigenvalues
of the map (8) are negative).

Now, the eigenvalues of the Jacobian of(Tα(α,v),Tv(α,v)) evaluated at an REE coincide
with the respective eigenvalues of the Jacobian ofTδ(δ) (see again AppendixA.2 for details).
Therefore, as the above discussion of eductive stability revealed, the∆II–REE cannot be
stable under adaptive learning as this equilibrium impliesthat one eigenvalue (λ2 from (5))
is greater than one. On the other hand, the above described results imply that the∆I–REE
is always stable under adaptive learning.
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4 Summary and discussion

The aim of the paper was to show that it is possible to analyze the properties of multiple
equilibria existing in the financial market model ofGanguli and Yang(2009) under learn-
ing. This analysis revealed that the additional equilibriawhich arise in their model due
the existence of supply shocks are unstable under eductive as well as adaptive learning. If
ever, the original Grossman–Stiglitz type REE turns out to be stable under learning as this
equilibrium is always stable under adaptive learning and potentially stable under eductive
learning.

As the model analyzed in the present paper is one where — contrary to the analysis
by Ganguli and Yang(2009) — private information is exogenously given, it remains to
discuss, whether the endogenization of the decision to acquire information can lead to any
changes of the stability results.Ganguli and Yang(2009) discuss two versions of their basic
model. While in the first version only private information regarding the unknown asset return
β is acquired endogenously, the second version additionallyassumes private information
acquisition regarding the aggregate supply of the stock ¯z. With respect to the equilibria that
arise taking as given the private acquisition of information (what they call ‘financial market
equilibria’), both versions lead to identical conclusions.

With regard to the acquisition of information, the crucial point is that the decision of a
trader to acquire information will be based on the costs as well as the expected benefits of
private information acquisition. Therefore, this decision is made in prospect of a specific
REE.5 As a consequence, any REE which already turns out to be unstable under learning
with exogenously given information will also be unstable when acquisition of information
is endogenous. In a formal analysis, endogenous acquisition of information goes along
with an additional condition for stability under learning which may or may not be stronger
than those derived here for the case with exogenous information. While this will not alter
the properties of a REE which is already unstable in case of exogenous information, a
REE which is stable with exogenous information might still become unstable in case of
endogenous information.6

Altogether, this implies that an REE which is unstable underlearning with exogenous
information must be also unstable under learning when the decision to acquire information
is endogenous. This argument applies to the above described∆II–REE and thus to the ad-
ditional REE equilibriaGanguli and Yang(2009) obtain in both versions of their model.
These equilibria are therefore unstable under eductive learning and least–squares learning
with exogenous as well as endogenous private information. Things are a bit different for
the ∆I–REE which might be stable under learning. Here endogenous acquisition of in-

5The two–stage procedure adopted e.g. byVerrecchia(1982) to compute REE with endogenous acquisition
of information illustrates this very clearly.

6With respect to eductive learning, this is demonstrated byDesgranges and Heinemann(2003) in a model
similar to the financial market model ofGrossman and Stiglitz(1980). They show that eductive stability with
exogenous information is a necessary condition for eductive stability with endogenous acquisition of informa-
tion as the latter leads to additional and possibly strongerconditions for eductive stability.
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formation can in fact give rise to stronger stability conditions. It is, however, beyond the
scope of this paper — and therefore an open question that might merit further research —
to derive the set of conditions that govern stability of the∆I–REE under learning in case of
endogenous information acquisition in a financial market model with supply information á
la Ganguli and Yang(2009).
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A Appendix

A.1 Best response mapping

Givenz(i) = δ0 + δ1s(i)+ δ2 p + δ3 z̄(i) for all i ∈ I, we havep = (z̄+ε)(1−δ3)−δ0−δ1 β
δ2

. With y( j) =

(s( j), p, z̄( j))′ andȳ = (β̄, p̄, z̄)′ it then follows:

E[β | p, s( j), z̄( j)] = β̄− ȳ′ M−1
yy M′

βy + y( j)′ M−1
yy M′

βy

Var[β | p, s( j), z̄( j)] =
1
τ
−M′

βy M−1
yy Mβy
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Here Myy = E[y( j)y( j)′] and Mβy = E[y( j)β] and the respective moments appearing in the ma-
trix Myy and vectorMβy are functions ofδ0, . . . ,δ3. It then follows that optimal asset demand

z∗( j) =
E[β | p,s( j), z̄( j)]−p
γ Var[β | p,s( j), z̄( j)] of a trader j is a linear function ofs( j), p and z̄( j)) the coefficients of

which depend onδ0, . . . ,δ3 too. Computing the respective moments substituting these into the asset
demand function then gives the best response mapping.

A.2 Asymptotic Properties of Least–Squares Learning

Using stochastic approximation tools described byEvans and Honkapohja(2001), it follows that
with respect tôα(i) andv̂(i) the asymptotic dynamics of the learning process (6a)–(6c) are governed
by ordinary differential equations which in the present context are given as follows:

α̇(i) = E
[

R(i)−1 y(i)
(

β− y(i)′α(i)
)]

=
(

E
[

y(i)y(i)′
])−1

E[y(i)β]−α(i)

= M−1
yy Mβy −α(i) (A.9a)

v̇(i) = E
[

(β− y′(i)αi)
2− v(i)

]

= E[β2]−E[y(i)β]′
(

E
[

y(i)y′(i)
])−1 E[y(i)β]− v(i)

=
1
τ
−M′

βy M−1
yy Mβy − v(i) (A.9b)

The moments appearing in the matrixMyy and the vectorMβy are functions of the parameters
α0, . . . ,α3 andv of the other traders’ demand functions. Thus, (A.9a) and (A.9b) define two dynamic
equationsα̇(i) = Tα(α, v)−α(i) and v̇(i) = Tv(α, v)− v(i). Now, all traders learn in an identical
way from individual data which is drawn from identical distributions. Due to this symmetry, we can
drop the individual subscripts when studying the asymptotic behavior of the learning process such
that we end up with the following dynamic system:

(

α̇
v̇

)

=

(

Tα(α, v)−α
Tv(α, v)− v

)

(A.10)

A REE is a stable stationary point of this system, whenever the eigenvalues of the Jacobian of
(Tα,Tv) evaluated at the REE are smaller than one. Computing the respective derivatives and using

the fact that in a REE we must have
α∗

0
γv∗ = δ∗0,

α∗
2−1
γv∗ = δ∗2 and

α∗
3

γv∗ = δ∗3 as well as

v∗ = Var[β | p, s(i), z̄(i)] =
(δ∗3−1)2

(δ∗3−1)2(τ+ τu)+ δ∗1
2(τε + τη)

then reveals after some manipulation that the eigenvalues of the Jacobian of(Tα,Tv) coincide with
the eigenvalues ofTδ
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