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1. Introduction 
 

 An important topic in macroeconomics and growth theory concerns microfoundations 
of basic classes of production functions. A number of authors argue that production function 
(which has received an attribute ‘global’ in recent publications) is not a primary economic 
object but a result of an optimal choice of a ‘local’ technology from a given technological 
menu (Matveenko 1997, Rubinov and Glover 1998, Jones 2005, Caselli and Coleman 2006, 
Growiec 2008). This approach perfectly matches with a view that, given a combination of 
production factors, only one local technology can be used efficiently1.  

In particular, Matveenko (1997) and Rubinov and Glover (1998), by use of a duality 
approach, showed that each global n-factor production function, F,  with constant returns to 
scale (CRS) can be represented as an optimal choice of a local Leontief technology from a 
menu (a set of technologies) corresponding to the function F.  

Later Jones (2005) indicated a similar representation of a 2-factor CRS global 
production function:  

),(~max),,(
),(:,

aLbKFNLKF
NbaHba 

 . 

Here ~F  is a local production function with an elasticity of substitution less than one, N is a 
parameter characterizing available technologies, and the set  

}),(:),{( NbaHba   
is a technological menu where technological parameters are chosen from. Under the following 
technological menu:  

                     NbabaH  ),( ,                                               (1) 
where 0,0   , Jones has received the global Cobb-Douglas function:  

F K L N N K L( , , )    
1

 


 


  .           
 The present paper develops this approach in several directions. We prove that for each 
n-factor neoclassical global production function F  there exists a unique technological menu 
consisting of Leontief local technologies and generating F . Basic properties of technological 
menus are studied. A simple method for indicating technological menus is proposed. As 
examples, technological menus for the Cobb-Douglas and the CES global production 
functions are constructed. A case of local CES functions is also considered.  

One more result of the paper concerns Jones (2005) “ideas model” based on the Pareto 
probability distribution and considered as a microfoundation for the global Cobb-Douglas 
function; its modification was recently constructed by Growiec (2008). We propose a simpler 
modification leading to the CES global production function. Different microfoundations also 
leading to the CES function have been proposed by Acemoglu (2003). 
 

2. Technological menus and their properties 
 

Let ni ,...,1  be factors of production. We will consider a family of local production 
functions ),( xl ; each of them is characterized by fixed technological coefficients (factor 
efficiencies) nili ,...,1,  . A basic case is the Leontief local production function 

                                                        
1 This view is distinctly formulated by (Basu and Weil 1998) who argue that “each technology is… appropriate 
for one and only one capital-labor ratio”. This idea is close to a concept of localized technological change 
(Atkinson and Stiglitz 1969, Nelson and Winter 1982, ch. 9, Stiglitz 1989, Antonelli 1995, 2008). 
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),( xl iini
xl

,...,1
min


 . Let )(xF  be a global neoclassical production function2. A set 

)},...,({ 1 nlll   is called a technological menu generating the global production function 
)(xF  if 

                                                      ),(max)( xlxF
l




 .                                                       (2) 

 An economic meaning of this notion is quite transparent. A firm (or a country) has 
available a set of local technologies  . Given a vector of production factors ),...,( 1 nxxx   it 
chooses a technology l  from   to achieve the maximum3 output )(xF . In result the global 
production function )(xF  is formed by use of the family of local production functions.     

A number of natural questions arise. Is each global production function generated by a 
technological menu? Is the technological menu, generating a concrete global production 
function, unique? If yes, what is the structure of the menu? The following Theorem 1 provides 
an exhaustive answer to these questions for the case of local Leontief technologies. 

Let 1M  be a unit level surface of the function )(xF : 
}1)(:{1  xFxM , 

i.e. the set of all vectors of production factors which provide a unit output.  
We will narrow the domain of production functions in some way. We will consider 

production functions defined on the space nR   which consists of positive n-dimensional 
vectors and the origin4.  

This narrowing allows us to consider for each vector of factors, 1Mx , a vector of 
inverse elements:  

),...,,( 11
2

1
1

  nxxxx . 
Its economic meaning is that 1

ix  is an average product of the i-th factor. (Evidently, 

ii xxFx /)(1   as soon as 1)( xF  for 1Mx ).  
We will see that the set  

                                                },:{ 11 Mxxll                                                         (3) 
(known as a support set – see (Matveenko, 1997, Rubinov and Glover, 1998)) is a unique 
technological menu generating the global production function )(xF  under Leontief local 
technologies.  

There is an equivalent way to describe the technological menu.                                       
For the global production function )(xF  let us define an auxiliary function  

                                                      











nll
F

lF
1,...,1

1)(

1

 ,                                                     (4) 

so called conjugate function. An advantage of its use is that it is easily computable (see 
examples in Section 3). The technological menu (3) can be found as a unit level surface of the 
conjugate function:  

}1)(:{1  lFl  . 
Both the technological menu and the conjugate functions have simple economic 

interpretations. It is easy to verify that the technological menu 1  generating the global 
                                                        
2 The functions are assumed to be non-negative, continuous, increasing and possessing CRS.  
3 This corresponds in full to the concept of (Basu and Weil 1998) – see footnote 1.  
4 Thereby, we will not consider points where at least one factor is not used. This does not contract the class of  
production functions. 
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production function F consists of all vectors l with coordinates equal to average products of 
factors that are possible given F. For example, for a 2-factor global production function 

),( LKF  the technological menu 1  consists of all admissible pairs )/),(,/),(( LLKFKLKF  
of average capital and labor productivities.  

An economic interpretation of the conjugate function )(lF   is the following. For each 
),...,( 1 nlll   it shows a minimum value of a total factor productivity (TFP) A such that the 

function (.)AF  makes admissible average products nll ,...,1 . 
 THEOREM 1. The set 1  is a unique technological menu generating the global 
production function F. 
 Proves of theorems are provided in Section 6. 
 One more question: is it possible, knowing a form of a technological menu, to 
predetermine properties of the global production function generated by this menu? A partial 
answer is given by the following Theorem 2, where, for the sake of simplicity, only a 2-
dimensional case is considered.  

Let us define a set of all available technologies, ~ , which includes the technological 
menu 1   as well as all worse technologies:  

}1)(,0,0:{~  lFlll LK
  

 THEOREM 2. If the set ~  of available technologies is convex then the elasticity of 
substitution   of the global production function ),( LKF  in any point ),( LKx   is less than 
½. 
 Notice that here the production function can possess different elasticities of 
substitution in different points, nevertheless they all have to be less than ½.  
 On an intuitive level the link between a form of the set of available technologies and a 
size of the elasticity of substitution of the global production function can be explained as 
follows. A low elasticity of substitution means a limited possibility to change technologies. A 
convexity of the set ~  just restricts a possibility of changing technologies: a technology 

1l  may be changed for a technology 1
~

l  if and only if there exists a chord connecting 
l  and l~ and situated in interior of the set ~ .  
 

3. Examples 
 

 For the global 2-factor Cobb-Douglas production function,  
 LKNNLKF ),,(  (where 10,1   ), 

its conjugate function is 

),( LK llF 

 
LK llN

1 , 

hence the technological menu is 
1  1:  

LK llNl  Nlll LK  : ; 
this coincides with Jones’ menu (1).  

For the global 2-factor CES production function,  
  rrr BKLANNLKF /1),,(    

with 0,1,0,  rrBA , the conjugate function is: 

),( LK llF    rr
K

r
L BlAlN

/11  , 
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and the technological menu is: 
})(:{ /1

1 NBlAll rr
K

r
L  . 

 
4. Local CES function 

 
 Similar results concerning the technological menus are also true in case of local CES 
function: 

pp
nn

p xlxlxl
1

11 )...(),(  ,            
where 0p  is a fixed parameter5.  

THEOREM 3. With local CES function, 
(i) A global production function generated by the 

technological menu 









 



n

i
ii al

1

1 1  ( )1 , 

has a CES form.  
(ii) A global production function generated by the technological menu 

 Blll n
n   ...: 1

1   (where )1,,...,1,10,0
1




n

i
ii niB   

has a Cobb-Douglas form. 
  

5. Technological ideas model 
 

Jones (2005), looking for microfoundations of global production functions, proposed a 
model of technological ideas. An idea i means the use of Leontief technological coefficients 

ii ba ,  which are random and independent; precisely, they are described by independent Pareto 
distributions:  

,1}{
















a
i

aaaP  ,1}{
















b
i

bbbP  

where 1,0,0,0,0   ba ba , and their joint distribution is:  
























ab
ii

abaabbPabG },{),(1 . 

 However, the independency assumption is not motivated at all. Let us make an 
alternative assumption: an idea is a pair of interdependent technological coefficients ii ba , . 
The following joint probability distribution can be used as a simple model:  

sh

a

h

b
ii

abaabbPabG




































 )1(},{),(2 , 

where ,0,0  ba ba  0,10  h  or 10  h .1, hs 6 

                                                        
5 The condition on p makes possible the part (ii) of Theorem 3. 
6 The conditions on h and s are imposed to provide appropriate properties of a production function and a 
probability distribution below.  
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 The functions 21, GG  have resembling properties, moreover, under 0h  and 
consths  , a conversion ),(),( 12 abGabG   takes place, where parameters of the functions  

21, GG  are linked by relations hshs )1(,   . 
 Assuming the distribution 2G , 

}~,~{}~{ yLayKbPyYP iii   sh
a

h
b

hs LKy ))(1()(~    . 
With N ideas,  

}~{ yYP    Nsh
a

h
b

hs LKy ))(1()(~1    . 
By using a normalization, 

  hshh
a

h
bN NLKz

11

))(1()(   , 
it is easy to receive: 

}~{ yzYP N )~exp(
~

1 hs
Nhs

y
N

y 










 . 

As well as in the Jones’ case, with large N , 
NzY  , 

where   is a random variable described by the Frechet distribution. 
 Thus, when the number of ideas is great, we come to a CES production function.  
 

6. Proves of theorems 
 

For n-dimensional vectors, yx   means that ii yx  ; yx   means that ii yx   
( ni ,...,1 ). A function  f  is called increasing if yx   implies )()( yfxf  .  

As a preliminary we prove the following Lemma. 
LEMMA. If )(xF  is an increasing function homogeneous of the power   then  

1)(),(  xFxl  
for each ., 11  lMx  
 Proof. Let 1Mx . Let us prove that 1),( xl  for any 1l . Assume the opposite:  

1),( xl  for some 1l . Then 
l x i ni i  1 1, , ..., , 

and hence  lx .  A number  1  can be picked up such that  lx  .  Then   
)()()()(   lFlFlFxF  , 

which contradicts to the belonging 11, MlMx   .  
Q.E.D 
Proof of Theorem 1.  Each vector x Rn   can be represented in the form xxFx )(  

where 1Mx . For any 1l  it follows from Lemma that 
),(1)(),( xxxFxl   . 

We use the Lemma again to receive  
1),(),()(),(  lxFxlxFxl  ; 

)(),()(),( xFxxxFxx    . 
This means the validity of (2).  
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 To prove the uniqueness, let   be another technological menu generating the same 
global production function )(xF . Let us consider in   points ),(maxarg xl

l



 for all 0x . 

No one of these points can lie below 1  (i.e. inside ~ ). On the other hand, if any of these 
points l  lies above  , then there exists a point l  such that ll  . For the point 

 11
1 ,...,   nlllx ,  

)(),(),()( xFxlxlxF   . 
This contradiction implies  . 

Q.E.D. 
Proof of Theorem 2.  Convexity of ~  is equivalent to concavity of the function 

)( KL ll  and, hence, to the inequality: 

02

2


K

L

dl
ld . 

By use of representation ),(),( kLfLKF  kkflkfl KL /)(),(   where LKk / , we find 

3
3

2

2

2

))()((
)()(2)()())((2 k

kfkkf
kfkfkfkkfkfk

dl
ld

K

L




 . 

The denominator is negative, so the sign of the fraction coincides with the sign of the 
expression 

)()())(')()((2 kfkkfkkfkfkf   
Recalling the well-known formula for the elasticity of substitution of production function 

),( LKF , 

)()(
))()()((

kfkkf
kfkkfkf




 , 

we can rewrite   as 
)12)(()(  kfkkf . 

As soon as 0)()(  kfkkf  for neoclassical production functions, the sign of   coincides 
with the sign of )12(  , so the convexity of ~  implies .012   

Q.E.D. 
Proof of Theorem 3. (i) First let us prove the validity of the equation (2) for any 
.1Mx  The Lagrange multipliers method provides the first order conditions:  

                                                n
pq

n
pq

n
pqpq xlaxla 





 

11

1

1

1

1

1 ... ,                                           (5) 

                                                1...11  





pq
q

n
pq

p

n
pq

q
pq

p

lala .                                            (6) 

In (5) denote niсxla i
pq

i
pq

i ,...,1(
11




 ). It follows from (6) that 1c . Hence, in the 
maximum point: 

pq
ii xal  , ni ,...,1 , 

and (2) is true.  
 Each vector 0x  can be represented as xx  , where 1Mx . Because of the 
homogeneity, 

)()()( xFxFxF    


),(max xl
l

 ).,(max xl
l



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 (ii) is proved in a similar way.  
Q.E.D. 
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