
     

 

 

  

  

Volume 31, Issue 1 

  

A note on concavity, homogeneity and non-Increasing returns to scale 

  

 
 

Juan David Prada  
Northwestern University and Banco de la República 

Abstract 

This paper provides a simple proof of the result that if a production function is homogeneous, displays non-increasing 
returns to scale, is increasing and quasiconcave, then it is concave. If the function is strictly quasiconcave or one-to-
one, homogeneous, displays decreasing returns to scale and if either it is increasing or if zero is in its domain, then it is 
strictly concave. Finally it is shown that we cannot dispense with these assumptions.
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1 Introduction

Friedman (1973) explores “the relationship between decreasing or constant returns on the
one hand, and concavity on the other” and provides a theorem for when a homogeneous
production function satisfying some standard economic assumptions is concave. His proof
however, as noted by Dalal (2000), “is not widely known, and because the proof is fairly
complex, it may not be generally accessible”. The same could be said about Bone (1989),
who proves a similar result. Dalal (2000) offers an easier alternative proof, but his result
only applies to positive functions. We extend the results by giving an easy proof that applies
for non-negative functions and by showing that we cannot dispense with the assumptions we
make.

2 Results and examples

Throughout this paper we will consider a function f : X ⊆ Rn
+ −→ R, where

Rn
+ = {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n}

is the non-negative orthant of Rn. This can represent a production technology, where X is
the input space, or a utility function, where X is the consumption set. We assume that X
is a convex set.

We now define some basic properties of f (·):

• The function f (·) is called increasing if and only if x ≥ y implies that f (x) ≥ f (y).
Here x ≥ y if and only if xi ≥ yi for i = 1, . . . , n.

• The function f (·) is quasiconcave if and only if for all x, y ∈ X and for all λ ∈ [0, 1]

we have f (λx+ (1− λ)y) ≥ min {f (x) , f (y)}. It is strictly quasiconcave if and only
if for all x 6= y and λ ∈ (0, 1) we have f (λx+ (1− λ)y) > min {f (x) , f (y)}.

• The function f (·) is homogeneous of degree γ if and only if for all t > 0, x ∈ X ⊆ Rn
+,

we have
f (tx) = tγf (x)

If 0 < γ ≤ 1, homogeneity implies that for all x ∈ X ⊆ Rn
+, f (tx) is a strictly increasing

and weakly concave function of t. This property is referred as “ray concavity” in the
literature.

Note that homogeneity of degree γ implies that f (0) = 0 if 0 ∈ X. To see this, take
any t > 0. Then f (0) = f (t0) = tγf (0). If f (0) 6= 0 then we would need t = 1, but
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t is arbitrary. Now, for any x ∈ X ⊆ Rn
+ we have x ≥ 0. Since f (·) is increasing, this

implies that f (x) ≥ 0. Finally, homogeneity gives us homotheticity: f (x) = f (y) implies
f (tx) = f (ty) for all t > 0, x, y ∈ X ⊆ Rn

+.
Now we can prove a useful theorem for increasing, homogeneous and quasiconcave func-

tions.

Theorem 1. If f (·) is quasiconcave, increasing and homogeneous of degree γ in x, where
0 < γ ≤ 1, then f (·) is concave in x.

Proof. Consider two distinct vectors x1, x2 ∈ X ⊆ Rn
+ and define yγ1 = f (x1) and yγ2 =

f (x2). If λ = 0 or λ = 1 then f (λx1 + (1− λ)x2) = λf (x1) + (1− λ) f (x2) trivially.
Consider then λ ∈ (0, 1). We will analyze all possible cases.

Case 1: y1 = y2.
We have

f (λx1 + (1− λ)x2) ≥ min {f (x1) , f (x2)} = yγ1 = yγ2 = λf (x1) + (1− λ) f (x2)

and the concavity definition is satisfied.
Case 2: y1 6= y2 and y1 = 0.
If y1 = 0 then we have f (x1) = 0, f (x2) 6= 0 and

f (λx1 + (1− λ)x2) ≥ f ((1− λ)x2) = (1− λ)γ f (x2) ≥ (1− λ) f (x2) = λf (x1)+(1− λ) f (x2)

where the first inequality follows from f (·) increasing and the second follows because xγ ≥ x

if x ∈ [0, 1] and 0 < γ ≤ 1.
Case 3: y1 6= 0, y2 6= 0 and y1 6= y2.
This is the case proved by Dalal (2000). Following his proof we have

f

(
x1

y1

)
= f

(
x2

y2

)
= 1

by homogeneity. Then by quasiconcavity

f

(
λ
x1

y1
+ (1− λ) x2

y2

)
≥ min

{
f

(
x1

y1

)
, f

(
x2

y2

)}
= 1

Make λ = ty1
ty1+(1−t)y2 for t ∈ [0, 1]. We have that λ ∈ [0, 1] and substituting

f

(
tx1 + (1− t)x2

ty1 + (1− t) y2

)
≥ 1
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and by homogeneity we get

f (tx1 + (1− t)x2) ≥ (ty1 + (1− t) y2)γ

because (ty1 + (1− t) y2)γ > 0. If 0 < γ ≤ 1 the function h (x) = xγ is concave and we get
(ty1 + (1− t) y2)γ ≥ tyγ1 + (1− t) yγ2 . Then we conclude that

f (tx1 + (1− t)x2) ≥ tf (x1) + (1− t) f (x2)

Now that all cases were considered and we can conclude that f (·) is concave.

Friedman (1973) and Bone (1989) prove a result similar to Theorem 1 under the assump-
tions of “ray concavity” and “homotheticity”. Their proof however is more involved. Note
also that the proof provided by Dalal (2000) only covers Case 3. That is, it assumes that
f (x) > 0 for all x.

We cannot get rid of the homogeneity assumption, as illustrated by Friedman (1973).
Since concavity implies quasiconcavity, this is a necessary condition.

We now provide an example where f (·) is not increasing and therefore Theorem 1 fails,
even though all other conditions for it hold.

Fact 1. Consider the function

f (x, z) =

zγ if x ≥ z

0 otherwise

where 0 < γ ≤ 1, x ∈ R+ and z ∈ R+. This function is homogeneous of degree γ and
quasiconcave. However it is not increasing, not concave and not strictly quasiconcave.

Proof. It is easy to check that this function is homogeneous of degree γ. Take t > 0. Then

f (tx, tz) =

tγzγ if tx ≥ tz

0 otherwise
= tγ

zγ if x ≥ z

0 otherwise
= tγf (x, z)

We need to check that f (·) is quasiconcave. Let Uc =
{
(x, z) ∈ R2

+ : f (x, z) ≥ c
}
be the

upper contour set for c ≥ 0. Note that U0 = R2
+ is a convex set. Now consider c > 0. Then

(x, z) ∈ Uc ⇐⇒ f (x, z) ≥ c ⇐⇒ zγ ≥ c ∧ x ≥ z. Thus

Uc =
{
(x, z) ∈ R2

+ : z ≥ c
1
γ

}
∩
{
(x, z) ∈ R2

+ : x ≥ z
}
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is the intersection of two convex sets and therefore it is convex. Note that Uc is not strictly
convex. Then f (x, z) is quasiconcave but not strictly quasiconcave.

Now take any x1 > z1 > 0 and let (x2, z2) = (x1, x1 + ε) for any ε > 0. Then (x2, z2) ≥
(x1, z1) but f (x2, z2) = 0 < zγ1 = f (x1, z1). Then the function is not increasing.

Finally we show that f (·) is not continuous. Let x > 0 and note that f
(
x, x+ 1

n

)
= 0

for all n ∈ N∗, but f (x, x) = xγ > 0. Since f (·) is not continuous, it is not concave.

Note that this example also shows that the conditions imposed by Theorem 1 are not
enough to secure strict concavity, even when γ < 1. We provide a more economically
appealing example of this fact.

Let g (x) = min {x1, x2}. It is well known that this function is increasing, concave but
not strictly quasiconcave. Now consider the function h (x) = xγ for γ ∈ (0, 1). The function
h (x) is strictly increasing and strictly concave. Define now

f (x) = h (g (x)) = (min {x1, x2})γ

Since h (x) is strictly monotone, the upper contour sets of f (x) are exactly the same upper
contour sets of g (x). Then f (x) is increasing, concave but not strictly quasiconcave. How-
ever it is homogeneous of degree γ ∈ (0, 1) and quasiconcave in x. Thus we cannot get strict
concavity using only the conditions imposed in Theorem 1.

The problem is that strict concavity implies strict quasiconcavity. However the conditions
of Theorem 1 do not guarantee the strict quasiconcavity of f (·). If we have this additional
requirement, as in Friedman (1973), we can easily get strict concavity.

Theorem 2. If f (·) is strictly quasiconcave, increasing and homogeneous of degree γ in x,
where 0 < γ < 1, then f (·) is strictly concave in x.

Proof. Consider two distinct vectors x1, x2 and define yγ1 = f (x1) and yγ2 = f (x2). Let
λ ∈ (0, 1). We again consider all possible cases.

Case 1: y1 = y2.
We have

f (λx1 + (1− λ)x2) > min {f (x1) , f (x2)} = λf (x1) + (1− λ) f (x2)

by strict quasiconcavity.
Case 2: y1 6= y2 and y1 = 0.
As shown in the proof of Theorem 1 we have

f (λx1 + (1− λ)x2) ≥ f ((1− λ)x2) = (1− λ)γ f (x2) > (1− λ) f (x2) = λf (x1)+(1− λ) f (x2)
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where the first inequality follows from f (·) increasing and the second inequality is strict
because 0 < γ < 1.

Note that if x1 = 0 then y1 = 0 and

f (λx1 + (1− λ)x2) = f ((1− λ)x2) = (1− λ)γ f (x2) > λf (x1) + (1− λ) f (x2)

where we did not need the fact that f (·) is increasing.
Case 3: y1 6= 0, y2 6= 0 and y1 6= y2.
Then we get

f (λx1 + (1− λ)x2) ≥ (λy1 + (1− λ) y2)γ

When 0 < γ < 1 the function h (x) = xγ is strictly concave and we get (λy1 + (1− λ) y2)γ >
λyγ1 +(1− λ) yγ2 . Then we conclude that f (λx1 + (1− λ)x2) > λf (x1)+(1− λ) f (x2).
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