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1 Introduction

The KPSS test is often used for testing the null hypothesis of stationarity against the al-

ternative of unit root. This test is among the most used by practioners since they are

implemented in many software. But as noted by some authors, the non-rejection of the

null hypothesis does not imply often the stationarity of the data (Ahamada, 2004). When

the source of the nonstationarity of the data is concerned with a shift in the unconditional

volatility instead of unit root, then the KPSS test fails to detect this form of instability, the

null is not rejected while the process is not really covariance-stationary. These failures about

the KPSS test were demonstrated from monte-carlo experiments only. But no theoretical

considerations was proposed to explain these findings. This paper provides a theoretical

explanation. We compute the exact asymptotic moments of the KPSS test under shift in

the unconditional variance. We show that these asymptotic moments remain unchanged

even under high abrupt changes. These findings give a theoretical explanation of earlier

results based only on Monte-Carlo simulations. This paper is organised as follows: section

two presents the asymptotic moments of the KPSS test under changes in the variance. Since

the KPSS test fails to detect variance shift, we propose also a complementary test in this

same section. Some simulation experiments are presented in section three. The last section

concludes the paper.

2 Asymptotic results and complementary test.

The KPSS test is based on the following model:

yt = rt + εt, t = 1, ..., T (1)

where rt = rt−1 + ut is a random walk and εt is a stationary process with the following

assumptions :

Assumptions : The εt’s and ut’s are mutually independent normal and i.i.d with E(εt) = 0,

var(εt) = σ2
ε , E(ut) = 0 and var(ut) = σ2

u > 0.

The null hypothesis is H0 : E(u2t ) = σ2
u = 0 which means that the component rt is a

constant instead of a unit root process. Under the null hypothesis, yt is stationary around
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level r0. The alternative hypothesis is given by, H1 : σ2
u > 0 . Let us consider the statistic:

η̂µT =

T−2
T∑
t=1

S2
t

σ̂2
(2)

where St =
t∑

j=1

êj, σ̂
2 = 1

T

T∑
t=1

ê2t , and êt’s are the residuals from regression yt = r0 + εt.

Let mT = E(η̂µT ) and σ2
T = var(η̂µT ). Under the null hypothesis of stationarity around the

level r0 the limiting distribution of η̂µT is given by
∫
V (r)2dr where V (r) = W (r)− rW (1)

and W (r), r ∈ [0, 1], is a Brownian motion process. For small values of T one can use

numerical methods to compute mT and σ2
T (see section A of appendix ). What are the

values of mT and σ2
T when the variance of εt is time varying1 in(1)? To answer to this

question we consider the following process:

yt = rt + htεt, t = 1, ..., T (3)

where the sequence (ht) is a bounded deterministic sequence allowing heteroskedasticity in

residuals: var(htεt) = σ2
εh

2
t . Without loss of generality one can always set var(εt) = σ2

ε = 1

in (3).

Lemma. Let σ̂2
T =

∑T
t=1 e

2
t/T and et the residuals from the regression: yt = r0 + htεt, εt ∼

i.i.d.N(0, 1) where (ht) is a bounded deterministic sequence such that

T∑
t=1

h2t/T → h
2

2 as T →∞ (4)

then

1

T

T∑
t=1

e2t a.s.−→ h
2

2. (5)

Proof: See section B of appendix.

Theorem. Assume in model (3 ) that (ht) is a bounded deterministic sequence with the

1For example, when the variance is affected by an abrupt change.
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condition (4).

Then under the null hypothesis that there is no unit root component in model (3 ) the following

results are valid:

lim
T→∞

mT =
1

6
(j)

and

lim
T→∞

σ2
T =

1

45
. (jj)

Proof: See section C of appendix.

The theorem shows that under general conditions in ht, the asymptotic moments of the

statistic of the KPSS test remain the same as in the case where ht is constant.

These results allow to understand and to complet earlier results based only on Monte-Carlo

simulations (Ahamada, 2004). The Monte-Carlo simulations have allowed to conclude that

when the source of the nonstationarity of the data is concerned with a shift in the un-

conditional volatility instead of unit root, then the KPSS test fails to detect this form of

instability. The null is not rejected while the process is not really stationary. The stability

of the moments (even under strong break as it is indicated by the theorem) contributes to

understand this lack of power. Further simulations are proposed in section three.

2.1 A complementary test

Since the KPSS test fails to detect bounded shifts in variance, we propose in this subsection

a complementary test. We are concerned with a test of the null hypothesis of variance

constancy in (3): H
(2)
0 : ht = constant. Let us consider the statistic τ defined as follows:

τ = max
k=1,...,T

√
T

2
|Dk| ,

where Dk = Ck

CT
− k

T
, Ck =

k∑
j=1

ê2j , k = 1, ..., T and êj the same residuals used for the

computation of the η̂µT in (2).
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Proposition. Under the null hypothesis of variance constancy,.i.e. H
(2)
0 , and assum-

ing that εt is i.i.N (0, σ2
ε), then the limiting distribution of τ is given by sup (W 0

t ) where

W 0
t is a standard Brownian Bridge.

Proof. Under the null hypothesis H
(2)
0 and assuming that εt is i.i.N (0, σ2

ε) then from

regression (1): var( êt ) = σ2
ε + T−1σ2

ε and cov(êt , êt′ ) = min(t, t′)T−2σ2
ε . Hence êt are

asymptotically i.i.N (0, σ2
ε). So the condition of the theorem of Inclan and Tiao(1994) is

obviously satisfied. The limiting distribution of
√

T
2
|Dk| is given by the one of W 0

t where

W 0
t is a standard Brownian Bridge. So the max

k=1,...,T

√
T
2
|Dk| is asymptotically distributed as

sup (W 0
t ) and the desired conclusion holds. From Inclan and Tiao (1994), C0.05 = 1.36 with

Pr[sup (W 0
t ) > C0.05] = 0.05.

We suggest to use the complementary test as follows: First, apply the KPSS test. If the null

hypothesis is rejected, then conclude that the data contain a unit root, i.e. there is nonsta-

tionarity. If the null is not rejected, then there is no unit root but there are a possible shifts in

the variance. Then apply the statistic τ . If the statistic τ does not reject the null hypothesis,

then there is covariance-stationarity. If the null is rejected by τ , then conclude that there is

no unit root but data have variance shift and the process is not covariance-stationary.

3 Monte-Carlo experiments

We consider the following data-generating process (DGP)

yt = 0.01 + htεt, t = 1, ..., 200 and εt is i.i.d.N(0, 1)

where ht = σ1 > 0 if t = 1, ..., 100 and ht = σ2 > 0 if t = 101, ..., 200. The ratio ϑ = σ2
σ1

gives the size of the shift in the unconditional variance. When ϑ = 1 the null hypothesis

of covariance stationarity holds (no unit root and no variance shift). The εt’s are generated

from the standard N(0, 1). For each value of ϑ, we generate 1000 values of η̂µT and τ .

We compute the proportion of the rejection of the null hypothesis for both tests. We use

asymptotic critical values at the 0.05 level (C0.05(η̂µT ) = 0.463 and C0.05(τ) = 1.360). Table
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1 reports results about the proportion of the rejection of the null hypothesis. For the KPSS

test, the values remain always near the nominal size α = 0.05. This also remains true

when there is increase in the size of the shift in the unconditional variances (i.e. increase in

ϑ = σ2
σ1

). These results confirm the theoretical finding of the theorem 1. The statistic η̂µT

behaves as in the case of the stationary model (i.e., ϑ = 1) even when high abrupt change

is hiden in the data. For the Statistic τ , we can see that the power increases with the size

of the shift ϑ. Hence the choice of τ as complementary test seems to be credible.

Table 1. Power under shift in variance (ϑ= σ2
σ1

)

ϑ= 1 ϑ= 2 ϑ= 5 ϑ= 10 ϑ= 15 ϑ= 20

Statistic τ 0.046 0.96 0.97 0.99 1.00 1.00

KPSS 0.048 0.049 0.052 0.053 0.052 0.053

4 Conclusion.

In this paper we focused on the KPSS test when changes occur in the variance of errors.

We have shown that the asymptotic moments remain unchanged even under strong abrupt

changes. These theoretical results allow to complete earlier findings based only on Monte-

Carlo experiments. Since many financial and macro-economic time series are characterized

by changes in the unconditional variance, some precaution must be taken when using the

KPSS test to check the stationarity of second order moment. A complementary test is to

investigate possible breaks in the unconditioanal variance.

APPENDIX

A. Computation of mT = E(η̂µT ) and σ2
T = var(η̂µT ).

Without loss of generality we assume that the intercept is zero in regression yt = r0 + εt.

The residuals are et = εt− ε, ε =
∑T

t=1 εt/T. It can be shown that η̂µT can be written as the
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ratio of quadratic form in ε = (ε1, ..., εT )′, i.e.

η̂µT = T−1
ε′C ′ACε

ε′Cε

where C = IT−11′T−1, IT is the identity matrix of dimension T and 1 is a T -dimensional vec-

tor of ones, and ε ∼ N(0,Γ),Γ =diag(h21, ..., h
2
T ). Let Q be an orthogonal matrix (i.e.Q′Q =

IT ) such that

QΓ1/2CΓ1/2Q = D = diag(d1, ..., dT ),

where Γ1/2 = diag(h1, ..., hT ) and let Λ = Q′Γ1/2CΓ1/2Q = (λi,j) then the exact moments of

η̂µT (see Jones (1987)) are given by

E(η̂µT ) = mT = T−1
∫ +∞

0

T∑
i=1

λi,i
1 + 2dit

Φ(t, d)dt, (6)

E(η̂2µT ) = T−2
∫ +∞

0

T∑
i=1

T∑
j=1

λi,iλj,j + 2λi,j
(1 + 2dit)(1 + 2djt)

Φ(t, d)dt,

where Φ(t, d) =
∏T

i=1(1 + 2dit)
−1/2. For small T , one can use the numerical methods pro-

posed by Paolella (2003) to compute the moments. But for large T such methods are time

consuming and the asymptotic values of E(η̂µT ) and E(η̂2µT ) will be useful.

To prove (j) and (jj) of the theorem we need to prove the Lemma.

B. Proof of the Lemma.

Let σ̂2
T =

∑T
t=1 e

2
t/T and et are the residuals from regression: yt = r0 + htεt. Assume

that r0 = 0 without loss of generality. We have et = htεt − hε, hε =
∑T

t=1 htεt/T hence

1

T

T∑
t=1

e2t =
1

T

T∑
t=1

(htεt)
2 − (hε)2 (7)

MT =
∑T

t=1 htεt is a square integrable martingale adapted to the σ−field zT = σ(ε1, ..., εT )

with the increasing process

〈MT 〉 =
T∑
t=1

E((htεt)
2 | zt−1)

=
T∑
t=1

h2t →∞
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The application of theorem 1.3.15 of Duflo (2003) leads to MT/ < MT >→ 0 almost

surely, this with (4) imply that

hε =
1

T

T∑
t=1

htεt a.s.−→ 0 (8)

Likewise MT =T
t=1 h

2
t (ε

2
t − 1) is a square integrable martingale adapted to z, with in-

creasing process 〈MT 〉 = 2Tt=1h
4
t , hence theorem 1.3.15. in Duflo (2003) implies that

1

〈MT 〉

T

t=1

h2t (ε
2
t − 1)−→0 almost surely on {〈M∞〉 =∞} (9)

where 〈M∞〉 = limT→∞ 〈MT 〉 . Since (Cauchy Schwarz inequality)(
T∑
t=1

h2t

)2

≤ T Tt=1h
4
t , (10)

The assumption (4) implies that there exist an universal constants 0 < K1 < K2 <∞ such

that

K1 <
1

T

T∑
t=1

h2t < K2,

this together with (10) implies that 〈MT 〉 ≥ 2TK2
1 which implies that {〈M∞〉 =∞} = Ω

and hence
1

〈MT 〉

T

t=1

h2t (ε
2
t − 1) a.s.−−−−→0, (11)

Since (ht) is a bounded deterministic sequence, then there exists an universal K > 0 such

that h4t ≤ K for all t ≥ 1, hence 〈MT 〉 ≤ 2TK for all T , therefore∣∣∣∣ 1

T

T

t=1
h2t (ε

2
t − 1)

∣∣∣∣ =
〈MT 〉
T

∣∣∣∣ 1

〈MT 〉

T

t=1

h2t (ε
2
t − 1)

∣∣∣∣
≤ 2K

∣∣∣∣ 1

〈MT 〉

T

t=1

h2t (ε
2
t − 1)

∣∣∣∣ ,
using (11), it follows that

1

T

T

t=1
h2t (ε

2
t − 1) a.s.−−−−→0. (12)

Combining (4) and (7), (8) and (12) we obtain (5).

C. Proof of the theorem.
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From lemma we deduce that η̂µT has the same limiting distribution as

ψ̂µT =
1

T 2h
2

2

T∑
t=1

S2
t , St =

t∑
j=1

ej, (13)

and hence

lim
T→∞

mT = lim
T→∞

E(ψ̂µT ) and lim
T→∞

σ2
T = lim

T→∞
var(ψ̂µT ). (14)

Let Dt the (2, T ) matrix given by

Dt =

 t
T
· · · · · · · · · · · · t

T

1 · · · 1 0 · · · 0


the ones are repeated t times. Since St = e1Dtu,where e1 = (−1, 1)′, u = (u1, ..., uT )′

ut = htεt, S
2
t can be written as a quadratic form in u , S2

t = u′D′te1e
′
1Dtu . Consequently

(see Magnus (1986))

E(S2
t ) = trace(D′te1e

′
1DtΓ),Γ = diag(h21, ..., h

2
T )

= trace(Γ1/2D′te1e
′
1DtΓ

1/2)

=
∥∥Γ1/2D′te1

∥∥2 ,

where ‖x‖2 is the Euclidian norm of the vector x.

Now ∥∥Γ1/2D′te1
∥∥2 =

t∑
j=1

h2j

(
1− t

T

)2

+
T∑

j=t+1

h2j

(
t

T

)2

(15)

=

(
T∑
j=1

h2j

)(
t

T

)2

+
t∑

j=1

h2j

(
1− 2t

T

)
Hence

E(ψ̂µT ) =
1

T 2h
2

2

T∑
t=1

E(S2
t )

=
1

T 2h
2

2

{
T∑
t=1

(
T∑
j=1

h2j

)(
t

T

)2

+
t∑

j=1

h2j

(
1− 2t

T

)}

=
1

h
2

2

{(
1

T

T∑
j=1

h2j

)
1

T 3

T∑
t=1

t2 +
1

T 2

T∑
t=1

t∑
j=1

h2j −
2

T 3

T∑
t=1

t
t∑

j=1

h2j

}
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The convergence (4) implies (see lemma 2 of Boutahar and Deniau (1996)) that

1

T 2

T∑
t=1

t∑
j=1

h2j →
h
2

2

2

1

T 3

T∑
t=1

t

t∑
j=1

h2j →
h
2

2

3

Therefore

lim
T→∞

E(ψ̂µT ) =
1

3
+

1

2
− 2

3
=

1

6
(16)

and (j) follows from (14) and (16).

var

(
1

T 2

T∑
t=1

S2
t

)
=

1

T 4

{
T∑
t=1

var(S2
t ) + 2

∑
s<t

cov
(
S2
s , S

2
t

)}
. (17)

Let Λt = D′te1e
′
1D
′
t, and Γ1/2 = diag(h1, ..., hT ), we have

var(S2
t ) = 2trace (ΛtΓΛtΓ)

= 2trace (D′te1e
′
1D
′
tΓD

′
te1e

′
1D
′
tΓ)

= 2trace
((

Γ1/2D′te1e
′
1D
′
tΓ

1/2
) (

Γ1/2D′te1e
′
1D
′
tΓ

1/2
))

= 2
∥∥Γ1/2D′te1

∥∥4 .
By using (15) we get

var(S2
t ) = 2

[(
T∑
j=1

h2j

)(
t

T

)2

+
t∑

j=1

h2j

(
1− 2t

T

)]2
By using (4), a straightforward computation leads to

1

T 4

T∑
t=1

var(S2
t ) ∼

(h
2

2)
2

15T
=

h
4

2

15T
, (18)

where aT ∼ bT means that aT/bT → 1 as T →∞. For s < t

cov
(
S2
s , S

2
t

)
= 2trace (ΛsΓΛtΓ)

= 2trace (D′se1e
′
1D
′
sΓD

′
te1e

′
1D
′
tΓ)

= 2trace
((

Γ1/2D′se1e
′
1D
′
sΓ

1/2
) (

Γ1/2D′te1e
′
1D
′
tΓ

1/2
))

= 2trace ((xx′)(yy′))

= 2(x′y)2,
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where x = Γ1/2D′te1, y = Γ1/2D′se1.

Since

x′ = (h1(1− t/T ), ..., hs(1− t/T ), ..., ht(1− t/T ),−ht+1t/T, ...,−hT t/T )

and

y′ = (h1(1− s/T ), ..., hs(1− s/T ),−hs+1s/T, ...,−hT s/T ) .

Therefore

cov
(
S2
s , S

2
t

)
= 2

{
s∑
j=1

h2j

(
1− s

T

)(
1− t

T

)
−

t∑
j=s+1

s

T

(
1− t

T

)
+

T∑
j=t+1

h2j
ts

T 2

}2

.

By using (4), a straightforward computation leads to

1

T 4

∑
s<t

cov
(
S2
s , S

2
t

)
∼

2h
4

2

T 4

T∑
s=1

T∑
t=s+1

{
st

T
+ s

(
1− (s+ t)

T

)
− (t− s) s

T

}
(19)

∼
h
4

2

90
,

since

T∑
s=1

T∑
t=s+1

(ts)2 ∼
T 6

18
,

T∑
s=1

T∑
t=s+1

ts2 ∼
T 5

15
,

T∑
s=1

T∑
t=s+1

s2 ∼
T 4

12
.

From (13), (17), (18) and (19) we deduce that

var(ψ̂µT ) =
1

h
4

2

var

(
1

T 2

T∑
t=1

S2
t

)
∼

1

45
,

from this and (14), (jj) holds.
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