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1. Introduction

In recent years, research on the panel unit root test methodology has focused on how to
consider correlation between cross sections. Representative examples of initial work are the
pooled t-test (LLC test) proposed by Levin et al. (2002), the averaged t-test (IPS test)
developed by Im et al. (2003), and the combination test developed by Maddala and Wu
(1999), all of which are referred to as first-generation panel unit root tests. Under the strong
assumption of cross-section independence, these methodologies proved more powerful than
the unit root test applied to univariate time-series data. The data, however, often do not
satisfy the assumption of cross-section independence; cross-country (or regional) data used
in testing, for example, the purchasing power parity hypothesis, income convergence
hypothesis, and current account stability are indicative. In addition, prior research has clearly
shown that application of the panel unit root test, despite the existence of cross-section
dependence in the data, results in serious size distortions (O’Connell, 1998; Strauss and Yigit,
2003; Pesaran, 2007). Many researchers have proposed “second-generation panel unit root
tests,” which consider correlation between cross sections, to overcome this problem.1

One such second-generation panel unit root test is the cross-sectionally augmented IPS
(CIPS) test proposed by Pesaran (2007).2 Pesaran introduced an unobserved single common
factor to the regression equation used for testing in order to explicitly consider correlation
between data cross sections. Other researchers, including Bai and Ng (2004), Moon and
Perron (2004), and Phillips and Sul (2003), have also proposed panel unit root tests applying
a common factor model, but Pesaran’s methodology is exceptional for its simplicity and
clarity. Whereas other approaches require the use of principal component analysis to estimate
factor loadings for common factors, Pesaran’s methodology instead introduces an
appropriate proxy for the common factor and uses OLS estimation, making it easier to apply.

For this paper, we tested the small sample properties of Pesaran’s CIPS test. More
specifically, we used Monte Carlo simulation to test the degree of distortion in the CIPS test
size when there is time-series unconditional and conditional heteroskedasticity in the
unobserved common factor and idiosyncratic error term. Tests of the small sample
performance of the CIPS test have already been performed by De Silva et al. (2009), Cerasa
(2008), and Pesaran (2007) as well, but none of these tests considered cases in which there is
time-series heteroskedasticity. Many papers have analyzed the impacts of heteroskedasticity
on the Dickey-Fuller test and other tests for a unit root in a univariate series,3 but there have
been few, if any, efforts to examine the impacts of heteroskedasticity on panel unit root tests,
let alone the CIPS test in particular. Since there are many economic variables with
time-variant distributions, like equity prices and exchange rates, it is only natural to presume
the existence of time-series heteroskedasticity. It is extremely important, therefore, that its
impact on the panel unit root test be quantitatively evaluated.

2. Panel Unit Root Test of Pesaran (2007)

Let us consider ity generated by a heterogeneous panel autoregressive process as follows:

, 1(1 ) , 1, 2, , ; 1, 2,it i i i i t ity y u i N t T           , (1)

1 For more details, refer to Choi (2006) and Breitung and Pesaran (2008).
2 For an example, Hashiguchi and Hamori (2012) analyzes the sustainability of trade balances using the
CIPS test.
3 For example, refer to Kim and Schmidt (1993), Hamori and Tokihisa (1997), and Sjölander (2008).
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where i and t denote a cross section unit and time, i and i are parameters, and itu is

an error term that has a single common factor structure:

it i t itu f   , (2)

or, in the vector notation,

t t tf u γ ε , (3)

in which  1 2, , ,t t t Ntu u u u  , tf is an unobserved common factor, tε is an 1N  vector of

idiosyncratic shocks it , and γ is an 1N  vector of parameters (factor loadings), which

are assumed to be 1

1
0

N

ii
N 


 . It is assumed that it is independently distributed across

both i and t with E( ) 0it  and 2 2E( )it i  ; tf is serially uncorrelated with E( ) 0tf  and
2E( ) 1tf  ; and i , tf , and it are independent of each other. Under these assumptions, the

covariance matrix of tu is given by E( )t t  u u Γ Ω where

2
1 1 2 1

2
2 1 2 2

2
1 2

N

N

N N N

    

    

    

 
 
 

  
 
 
 

Γ





   



,

2
1

2
2

2

0 0

0 0

0 0 N







 
 
 

  
 
 
 

Ω





   



, (4)

and hence, it is clear that tu is contemporaneously correlated due to the existence of

off-diagonal elements in Γ .
Equation (1) can be rewritten as

, 1it i i i t i t ity y f        , (5)

where , 1it it i ty y y    , (1 )i i i    , and 1i i   . The null hypothesis of interest is

0H : 0,i for all i  , (6)

and the alternative is

1 1 1 1H : 0, 1,2, , ; 0, 1, 2, , .i ii N i N N N        (7)

According to Pesaran (2006), the cross-section mean of ity and , 1i ty  can be used as the

proxies for the unobserved common factor tf . Pesaran (2007) exploits the results of his

study to derive the test statistics for the hypothesis, and proposes the cross-sectionally
augmented Dickey-Fuller (CADF) regression model:
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, 1 1it i i i t i t i t ity a b y c y d y e        , (8)

where 1
1 , 11

N

t i ti
y N y
 
  and 1

1

N

t iti
y N y


   . The t-ratio of the OLS estimate of ib in

Equation (8), defined by ( , )it N T , is referred to as a CADF statistic for i , and the average of

its t-ratio

1

1
( , ) ( , )

N

ii
CIPS N T N t N T


  (9)

yields the panel unit root test statistic. ( , )CIPS N T is a cross-sectionally augmented version

of the test statistic proposed by Im et al. (2003) and is referred to as a CIPS statistic.
While the deterministic term of Equation (8) is the intercept only, it can be easily extended

to the model including the linear time trend:

, 1 1it i i i i t i t i t ity a t b y c y d y e          . (10)

Although the distributions of both CADF and CIPS statistics are non-standard, the critical
values in the instances of both the intercept only and the linear time trend are tabulated by
Pesaran (2007).4

3. Monte Carlo Simulation

In the panel unit root test proposed by Pesaran (2007), the variance of both the common
factor tf and the idiosyncratic term it is assumed to be time invariant. We consider the

case in the presence of time-series conditional and unconditional heteroskedasticity in tf

and it , and investigate the extent to which such heteroskedasticity influences the size of

CIPS statistics using Monte Carlo simulations. The following subsections explain the data
generating process (DGP) for our investigation and show the simulation results.

3.1. Design of Monte Carlo Simulation

Under the null hypothesis of unit root, Equation (5) is rewritten as

, 1it i t i t ity y f    . (11)

Based on the above equation, the DGP for our investigation is as follows. First, we consider
the DGP where the variance of it is time invariant, but tf has the following two types of

time-series heteroskedasticity:

4 It is possible to extend the CADF and CIPS statistics to the case in which both it and tf are serially

correlated. For details, refer to Pesaran (2007, pp. 279-282).
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2 2~ (0, ), ~ [0.5,1.5]it i iN U   ,
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, ~ (0,1)t t t tf h N 

2
0 1 1t th f    (13)

2 2~ (0, ), ~ [0.5,1.5]it i iN U   ,

where ( )N and ( )U denote Normal and Uniform distributions, respectively. DGP 1f

indicates that the variance of tf changes in the middle point of the sample period, implying

that tf has unconditional heteroskedasticity. DGP 2f is the case that tf follows the

autoregressive conditional heteroskedasticity (ARCH) with order one: ARCH(1). The
parameters 0 and 1 will be specified later.

Next, we consider the reverse situation where the variance of tf is time invariant, but it

has time-series heteroskedasticity, specifying as follows:
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
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2 2
1 2~ [0.3, 0.5], ~ [3, 5]i iU U 

(14)

~ (0,1)tf N ,

and

2DGP

, ~ (0,1)it it it ith N  

2
0 1 , 1it i i i th      (15)

~ (0,1)tf N .

1DGP and 2DGP represent unconditional heteroskedasticity in it and ARCH(1)

process in it , respectively.

The remaining parameters we do not specify are 0 , 1 , 0i , and 1i in the ARCH(1)

models, and i in Equation (11). As for the parameters in the ARCH models, we adopt the

results of the study for single time series unit root tests. According to those studies, the
Dickey-Fuller test tends to show the over-size distortion when the error term has conditional
heteroskedasticity. Although the degree of the distortion is not so serious in finite sample
size, it has a tendency to increase as the volatility persistence parameters ( 1 and 1i )

enlarge and come close to 1, and the intercepts ( 0 and 0i ) come close to 0 (Kim and

Schmidt, 1993; Sjölander, 2008).5 On the basis of these observations, we consider two cases
of low and high volatility persistence,

5 Note that Kim and Schmidt (1993) and Sjölander (2008) exploit GARCH(1) model.
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0 0.5,  1

0.1 Low persistence

0.9 High persistence



 


0 ~ [0.3,0.5],i U 1

[0.05, 0.25] Low persistence
~

[0.75, 0.95] High persistence
i

U

U




 ,

(16)

and examine whether, as in the case of the Dickey-Fuller test, the size distortion of CIPS test
is more serious in high persistence case than in low persistence case.

Finally, we specify the parameter i , which represents the degree of cross-section

dependence. Following Pesaran (2007), we consider the low and high cross-section
dependence as follows:

[0, 0.2] Low cross-section dependence
~

[ 1, 3] High cross-section dependence.
i

U

U






(17)

Combining these parameter settings in Equations (16) and (17) and the DGPs in Equations
(12) through (15), 12 different DGPs are obtained for our Monte Carlo simulations, which
are summarized in Table I. On the basis of the DGPs, we compute the empirical size
(one-sided lower probability) of CIPS test at the critical values of the 5% nominal level,
which are proposed by Pesaran (2007), and investigate the extent of the difference between
the empirical size and the nominal size. The computation procedure for the empirical size is
as follows: 6

(i)

Generate ity for 1,2, ,i N  and 50, 49, ,1, 2, ,t T    from , 50 0iy   ,

under the DGPs in Table I. The initial values of tf in Equation (13) and it

in Equation (15) are 50 0f  and , 50 0i   for all i , respectively.

(ii)
Calculate CADF statistic for each i , using ity for 1, 2, ,t T  generated in

(i) and the CADF regression models with the intercept only (Equation (8)) and
with the linear time trend (Equation (10)).

(iii)
Calculate CIPS statistic for both the intercept case and the linear time trend
case, using the CADF statistics obtained in (ii).

Replicate (i) to (iii) 50,000 times.

(iv)
Calculate the empirical size at the critical values of the 5% nominal level,
using 50,000 CIPS statistics.

For the values of N and T , we choose  10, 20, 30, 50,100N  and  20, 30, 50,100, 200T  .

3.2. Simulation Results

Tables II through IV present the simulation results in the case where tf has

heteroskedasticity. Table II shows the case of the unconditional heteroskedasticity, and
Tables III and IV indicate the case of ARCH(1) with low and high volatility persistence,
respectively. As these tables suggest, irrespective of the difference in type of

6 All computations are implemented using Ox version 4.10 (Doornik, 2006).
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heteroskedasticity and in the parameter settings, the computed values of the empirical size
are almost the same as the 5% nominal size. This finding implies that Pesaran’s (2007) CIPS
test is substantially robust for the presence of conditional and unconditional
heteroskedasticity in tf .

Tables V through VII report the results in the case where it has heteroskedasticity. In

contrast to the data where tf has heteroskedasticity, size distortions are observed. As Table

V shows, CIPS test suffers from the problem of under-size distortions when the
unconditional heteroskedasticity exists in it . The degree of the distortion tends to be large

in the case of the linear time trend model and the high cross-section dependence, and it has a
tendency to increase as N enlarges. According to Tables VI and VII, the presence of
ARCH(1) in it leads to the problem of over-size distortions. Interestingly, the direction of

the size distortion is opposite to that of the unconditional heteroskedasticity. Since the values
of the empirical size in the low persistence case (Table VI) are around 0.06, the degree of the
distortions is not too large. However, in the high persistence case (Table VII), the minimum
value of the empirical size is 0.114, and the maximum value is 0.273. Hence, it is clear that,
in finite samples, the size distortions of CIPS test due to the presence of ARCH(1) in it are

more serious in the high persistence case than in the low persistence case. This property of
CIPS test is similar to that observed with the Dickey-Fuller test (Kim and Schmidt, 1993;
Sjölander, 2008). Table VII indicates that, as N enlarges, the degree of the distortion
increases in the range of 20T  to 50 or 100T  , and that its degree slightly decreases in
more than 50 or 100T  at arbitrary sample size N .

4. Conclusion

This paper used Monte Carlo simulations to analyze the small sample properties of the panel
unit root test (CIPS test) proposed by Pesaran (2007). While there are several previous
examples of work examining the small sample properties of the CIPS test, this paper is
unique for its analysis of the impacts of time-series heteroskedasticity on CIPS test size.
Numerous papers have analyzed the impacts of heteroskedasticity on the Dickey-Fuller test
and other tests for a unit root in a univariate series, but there has been very little, if any, work
done to perform the same analysis on panel unit root tests, including the CIPS test.
Analyzing the impact of heteroskedasticity on panel unit root tests is extremely important,
given the large number of economic variables with time-variant distributions, like equity
prices and exchange rates.

For this paper, we considered two types of heteroskedasticity, unconditional
heteroskedasticity and ARCH, as characteristics of the unobserved common factor tf and

the idiosyncratic error term it , and we analyzed the impacts on CIPS test size. For ARCH,

we examined cases of high and low volatility persistence separately. Our results showed that
when there is heteroskedasticity only in tf , there was almost no CIPS test size distortion,

regardless of heteroskedasticity types (unconditional or conditional) and degree of volatility
persistence. The CIPS test, therefore, could be extremely robust versus heteroskedasticity in
the unobserved common factor.

In contrast, when there is heteroskedasticity only in it , our analysis found distortion in

the CIPS test size. Importantly, we found under-size distortion in the case of unconditional
heteroskedasticity and, conversely, over-size distortion in the case of ARCH. Furthermore,
we observed a tendency for over-size distortion to moderate with low volatility persistence
in the ARCH process and exaggerate with high volatility persistence. It follows, then, that
the problem of under-rejection of the null hypothesis emerges when there is unconditional
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heteroskedasticity in it —for example, in the form of a distribution shift due to a structural

change—and serious over-rejection emerges when it is characterized by an ARCH process

with high volatility persistence.
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Table I. Data generating process

Heteroskedasticity in tf Results

1. DGP 1f with low CD.
Table II

2. DGP 1f with high CD.

3. DGP 2f with low CD and low VP.
Table III

4. DGP 2f with high CD and low VP.

5. DGP 2f with low CD and high VP.
Table IV

6. DGP 2f with high CD and high VP.

Heteroskedasticity in it Results

7. DGP 1 with low CD.
Table V

8. DGP 1 with high CD.

9. 2DGP with low CD and low VP.
Table VI

10. 2DGP with high CD and low VP.

11. 2DGP with low CD and high VP.
Table VII

12. 2DGP with high CD and high VP.

Note: The DGP 1f , DGP 2f , DGP 1 , and 2DGP are defined in Equations (12) through (15). CD

and VP designate the cross-section dependence (CD) and the volatility persistence (VP).

Table II. Empirical size of CIPS tests with unconditional heteroskedasticity in tf

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.051 0.050 0.051 0.049 0.051 0.055 0.055 0.055 0.056 0.056

N = 20 0.052 0.050 0.046 0.049 0.048 0.050 0.049 0.049 0.050 0.049

N = 30 0.048 0.049 0.046 0.047 0.050 0.048 0.048 0.047 0.046 0.047

N = 50 0.048 0.047 0.050 0.047 0.048 0.050 0.050 0.051 0.049 0.050

N = 100 0.047 0.044 0.044 0.044 0.041 0.045 0.044 0.041 0.040 0.037

Linear time trend case

N = 10 0.053 0.050 0.052 0.050 0.050 0.059 0.058 0.058 0.059 0.057

N = 20 0.053 0.048 0.051 0.051 0.049 0.056 0.053 0.056 0.056 0.054

N = 30 0.048 0.053 0.050 0.050 0.050 0.054 0.053 0.055 0.054 0.051

N = 50 0.053 0.049 0.051 0.052 0.049 0.061 0.060 0.059 0.057 0.061

N = 100 0.053 0.052 0.054 0.049 0.051 0.057 0.055 0.055 0.052 0.053

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).
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Table III. Empirical size of CIPS tests with ARCH(1) in tf : low volatility persistence

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.048 0.049 0.053 0.051 0.050 0.055 0.053 0.054 0.056 0.056

N = 20 0.051 0.049 0.048 0.052 0.048 0.053 0.052 0.051 0.052 0.052

N = 30 0.050 0.050 0.049 0.048 0.052 0.050 0.050 0.050 0.050 0.051

N = 50 0.048 0.049 0.051 0.051 0.054 0.053 0.054 0.054 0.056 0.055

N = 100 0.050 0.051 0.049 0.051 0.049 0.052 0.051 0.048 0.050 0.049

Linear time trend case

N = 10 0.052 0.051 0.050 0.051 0.050 0.056 0.053 0.055 0.056 0.056

N = 20 0.051 0.049 0.050 0.053 0.048 0.057 0.051 0.056 0.055 0.053

N = 30 0.048 0.050 0.048 0.050 0.050 0.050 0.051 0.050 0.050 0.052

N = 50 0.050 0.047 0.050 0.050 0.049 0.056 0.057 0.057 0.058 0.057

N = 100 0.052 0.052 0.050 0.049 0.051 0.054 0.051 0.052 0.050 0.049

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).

Table IV. Empirical size of CIPS tests with ARCH(1) in tf : high volatility persistence

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.052 0.050 0.052 0.050 0.050 0.055 0.056 0.057 0.057 0.057

N = 20 0.050 0.049 0.048 0.049 0.048 0.054 0.053 0.051 0.053 0.052

N = 30 0.050 0.049 0.050 0.047 0.052 0.050 0.050 0.048 0.046 0.050

N = 50 0.049 0.049 0.050 0.050 0.050 0.055 0.054 0.055 0.055 0.057

N = 100 0.052 0.047 0.047 0.049 0.045 0.051 0.047 0.045 0.047 0.044

Linear time trend case

N = 10 0.052 0.047 0.049 0.052 0.051 0.058 0.056 0.057 0.059 0.057

N = 20 0.054 0.048 0.051 0.052 0.048 0.056 0.051 0.053 0.055 0.054

N = 30 0.049 0.052 0.049 0.048 0.049 0.051 0.052 0.051 0.049 0.049

N = 50 0.050 0.049 0.049 0.049 0.051 0.059 0.057 0.056 0.055 0.058

N = 100 0.053 0.049 0.049 0.050 0.049 0.055 0.052 0.048 0.046 0.046

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).
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Table V. Empirical size of CIPS tests with unconditional heteroskedasticity in it

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.056 0.054 0.054 0.053 0.053 0.036 0.035 0.036 0.036 0.035

N = 20 0.061 0.056 0.055 0.052 0.050 0.029 0.029 0.028 0.026 0.027

N = 30 0.060 0.053 0.052 0.047 0.049 0.027 0.026 0.025 0.024 0.026

N = 50 0.057 0.052 0.049 0.048 0.048 0.027 0.028 0.028 0.027 0.028

N = 100 0.053 0.046 0.044 0.042 0.041 0.026 0.025 0.024 0.024 0.022

Linear time trend case

N = 10 0.046 0.045 0.045 0.045 0.043 0.033 0.032 0.034 0.034 0.034

N = 20 0.040 0.035 0.034 0.034 0.033 0.022 0.020 0.022 0.022 0.021

N = 30 0.032 0.030 0.028 0.027 0.027 0.017 0.017 0.015 0.016 0.015

N = 50 0.026 0.020 0.020 0.019 0.019 0.016 0.013 0.013 0.013 0.014

N = 100 0.017 0.012 0.012 0.010 0.010 0.008 0.007 0.005 0.006 0.005

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).

Table VI. Empirical size of CIPS tests with ARCH(1) in it : low volatility persistence

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.059 0.060 0.060 0.056 0.052 0.068 0.063 0.064 0.061 0.058

N = 20 0.065 0.060 0.058 0.055 0.052 0.065 0.062 0.059 0.059 0.055

N = 30 0.064 0.062 0.055 0.052 0.054 0.064 0.063 0.058 0.056 0.055

N = 50 0.062 0.061 0.058 0.055 0.055 0.065 0.066 0.066 0.063 0.061

N = 100 0.066 0.063 0.060 0.057 0.051 0.066 0.063 0.059 0.055 0.053

Linear time trend case

N = 10 0.062 0.061 0.060 0.057 0.054 0.068 0.067 0.065 0.063 0.061

N = 20 0.064 0.063 0.062 0.060 0.052 0.068 0.064 0.067 0.064 0.055

N = 30 0.063 0.064 0.061 0.057 0.054 0.063 0.066 0.062 0.058 0.056

N = 50 0.063 0.060 0.061 0.056 0.054 0.070 0.068 0.068 0.065 0.061

N = 100 0.064 0.065 0.065 0.058 0.055 0.063 0.065 0.064 0.059 0.056

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).
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Table VII. Empirical size of CIPS tests with ARCH(1) in it : high volatility persistence

Low cross-section dependence High cross-section dependence

T = 20 T = 30 T = 50 T = 100 T = 200 T = 20 T = 30 T = 50 T = 100 T = 200

Intercept case

N = 10 0.124 0.126 0.132 0.122 0.114 0.132 0.132 0.138 0.132 0.127

N = 20 0.145 0.151 0.150 0.146 0.135 0.159 0.159 0.158 0.159 0.148

N = 30 0.153 0.159 0.158 0.151 0.147 0.162 0.166 0.162 0.159 0.151

N = 50 0.166 0.171 0.175 0.172 0.158 0.174 0.177 0.183 0.178 0.164

N = 100 0.186 0.185 0.183 0.180 0.163 0.182 0.183 0.185 0.181 0.162

Linear time trend case

N = 10 0.123 0.135 0.143 0.147 0.141 0.135 0.140 0.152 0.157 0.155

N = 20 0.150 0.164 0.184 0.192 0.183 0.164 0.172 0.193 0.203 0.197

N = 30 0.152 0.184 0.201 0.207 0.203 0.161 0.189 0.203 0.212 0.212

N = 50 0.171 0.195 0.222 0.238 0.232 0.185 0.204 0.228 0.242 0.238

N = 100 0.184 0.222 0.252 0.273 0.259 0.184 0.220 0.250 0.265 0.261

Note: The empirical size (one-sided lower probability) of CIPS test is computed at the critical values of the

0.05 (5%) nominal size, which are proposed by Pesaran (2007).
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