


Economics Bulletin, 2012, Vol. 32 No. 4 pp. 2849-2859

1 Introduction

In this paper, we compare the forecasting performance of the linear causal autore-

gressive (AR) model with dependence only on the past with that of the noncausal

AR model of Lanne and Saikkonen (2011), that explicitly incorporates depend-

ence on the future. Noncausal models have hardly been applied to economic time

series, and also the theoretical literature is scant, with Breidt et al. (1991) and

Rosenblatt (2000) being the major early references. However, recently Lanne and

Saikkonen (2011), and Lanne, Luoma and Luoto (2012) have found noncausality

in U.S. inflation series, and Lanne, Luoto and Saikkonen (2012) provide evidence

in favor of improvements in the accuracy of inflation forecasts. Inspired by these

findings, we set out to assess whether more accurate forecasts in general result

from allowing for noncausality in the predictive model.

In our forecast comparisons, we concentrate on the comprehensive data set of

Marcellino, Stock and Watson (2006) consisting of 170 monthly U.S. macroeco-

nomic and financial time series. As many important macroeconomic time series,

such as the real GDP and its components, are measured only on a quarterly basis,

we also consider a more limited collection of quarterly U.S. macroeconomic time

series.

Overall, the results suggest that for most monthly time series, taking the pres-

ence of noncausality into account leads to improvements in forecast accuracy. The

noncausal model consistently outperforms the causal model with few exceptions.

For the quarterly time series even greater improvements due to allowing for non-

causality are found.

The rest of the paper is organized as follows. Section 2 introduces the noncausal

autoregressive model of Lanne and Saikkonen (2011), while Section 3 describes the

simulation-based forecasting method of Lanne, Luoto and Saikkonen (2012). The

forecasting results are reported in Section 4. Finally, Section 5 concludes.
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2 Noncausal AR Model

The noncausal AR(r, s) model of Lanne and Saikkonen (2011) encompassing the

causal AR model as a special case can be written as

ϕ(B−1)φ(B) yt = εt, (1)

where ϕ(B−1) = 1 − ϕ1B
−1 − . . . − ϕsB

−s, φ(B) = 1 − φ1B − . . . − φrB
r, and

B is the usual backshift operator (i.e., Bkyt = yt−k). The polynomials φ(z) and

ϕ(z) are assumed to have their zeros outside the unit circle. Furthermore, εt is

an independently and identically distributed (i.i.d.) non-Gaussian error term with

mean zero and variance σ2. When s = 0 in (1) so that ϕ(B−1) = 1 , the model

reduces to the conventional causal AR(r) model, i.e., yt depends only on its past

values. On the other hand, when r = 0, model (1) is the purely noncausal AR(0,s)

model with dependence of yt only on its future values.

For forecasting purposes, it is useful to write model (1) in the following equi-

valent form

yt = φ1yt−1 + . . .+ φryt−r + vt, (2)

where

vt = ϕ(B−1)−1εt =
∞∑
j=0

βj εt+j. (3)

This shows how the AR(r,s) model incorporates dependence on future error terms

εt+j, j ≥ 0.

As pointed out by Breidt et al. (1991), inter alia, distinguishing between causal

and noncausal ARmodels requires a non-Gaussian error term. Lanne and Saikkonen

(2011), and Lanne, Luoma and Luoto (2012) found Student’s t distribution to fit

U.S. inflation series well, and following their lead, we assume throughout that

εt is t-distributed. With the exception of a number of financial time series, this

distributional assumption turned out adequate in our data sets.

For selecting the correct orders, r and s, of the noncausal AR model, Lanne and

Saikkonen (2011) proposed a two-step method that we also employ in Section 4.

The first step involves finding an adequate causal Gaussian AR(p) model. To that

end, we employ the Akaike (AIC) and Schwarz (BIC) information criteria with
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the maximum number of lags equal to 8 and 12 for quarterly and monthly data,

respectively. We also entertained the fixed lag length p = 4, which, however, turned

out inferior. Hence, these results are not reported. In the second step, all noncausal

AR(r, s) models with the sum of r and s equal to p are estimated and the model

yielding the greatest value of the log-likelihood function is used for forecasting.

3 Forecasting Method

To obtain forecasts of the noncausal AR(r, s) model (1), we employ the simulation-

based method recently proposed by Lanne, Luoto and Saikkonen (2012), whose

main idea is briefly sketched here. The conditional expectation ET (·) (conditional

on the observed values y1, . . . , yT ) of representation (2) of the AR(r,s) model yields

the mean-square sense optimal forecast of yT+h, h > 0,

ET (yT+h) = φ1ET (yT+h−1) + . . .+ φrET (yT+h−r) + ET (vT+h). (4)

Thus, provided a forecast of vT+h is available, multiperiod forecasts at any forecast

horizon h can be constructed recursively.

The forecast of vT+h can be based on the approximation

vT+h ≈
M−h∑
j=0

βj εT+h+j, (5)

where the integer M is assumed to be large enough to make the approximation

error negligible. Therefore, an approximation to (4) is provided by

ET (yT+h) ≈ φ1ET (yT+h−1) + . . .+ φrET (yT+h−r) + ET

(M−h∑
j=0

βj εT+h+j

)
. (6)

In computing forecasts, the idea is to approximate the conditional expectation

of vT+h by simulating N mutually independent realizations from the conditional

distribution of
(
εT+1, . . . , εT+M

)
. Lanne, Luoto and Saikkonen (2012) provide sim-

ulation evidence that even with relatively small values of the truncation parameter

M and the number of simulation replications N , approximation (5) is quite accur-

ate. Based on their simulation results, we set M=50 and N=10 000, respectively.
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4 Results

In this section, we report the forecasting results for a large number of monthly

and quarterly time series. The forecasts are based on an expansive estimation

window, and in forecasting, the model selection procedure described in Section 2

is repeated and the parameters are re-estimated at each date over the forecasting

period. Forecast accuracy is assessed by the relative mean-squared forecast error

(MSFE) criterion, with the causal Gaussian AR(p) model as the benchmark.1

Our monthly data set consisting of 170 monthly U.S. macroeconomic and finan-

cial time series was originally compiled by Marcellino et al. (2006). For most series

(except 29 series), the sample period ranges from 1959:1 to 2002:12. Following

Marcellino et al. (2006), the first forecast date is 1979:1.The mean and median of

the empirical distribution of the relative MSFEs at a number of forecast horizons

are presented in the upper panel of Table 1. In addition, the fraction of the series

with the relative MSFE below unity is reported in each case.

When the BIC is used in model selection, with the exception of the one-month

forecast horizon, the noncausal model appears to forecast more accurately than

the causal model, i.e., the mean and median of the relative MSFEs are less than

unity, and for more than half of the series, the noncausal model produces more

accurate forecasts. On the other hand, if the AIC is employed, the differences in

the mean and median of the relative MSFE are minor, and in a few cases even

slightly advantageous to the causal model. However, also in these cases, beyond

the one-period horizon, the fractions always exceed 50%. The null hypothesis of

no qualitative difference between the forecasts of noncausal and causal models can

be rejected in most cases at least at the 10% significance level by the sign test of

Diebold and Mariano (1995).

The t distribution turned out to be insuffi cient in capturing the excessive kur-

tosis of monthly interest rates and asset returns, and, therefore, we also report

results for a data set excluding these 33 financial variables in the lower panel of

Table 1. With the exception of the one-month forecasts, the superiority of the

1 With the mean absolute forecast error, similar results (not reported) are obtained (for

details, see the discussion paper version of this study, Lanne, Nyberg and Saarinen (2011).
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noncausal model is evident. The means and medians of the relative MSFEs at

all multiperiod forecast horizons are less than unity. The fractions often exceed

60% implying that qualitatively the noncausal AR model outperforms the causal

model.

In Table 2, we break down the results of Table 1 to the five categories which

are the same as examined by Marcellino et al. (2006). The results reveal that there

are some differences in forecast performance between the different categories of

variables. However, despite the limited number of variables in each category, the

common finding appears to be that the noncausal model outperforms the causal

model at all forecast horizons and all categories except for the one-period forecasts

and the financial variables included in the category D.

Our quarterly data set comprises 18 U.S. macroeconomic time series including,

e.g., the GDP and its components, price indices and (un)employment series.2 For

most series, the sample period ranges from the beginning of 1947 to the first or

second quarter of 2010. Although our quarterly data set hence covers a somewhat

longer time period than the monthly data set, for consistency, the first out-of-

sample forecasts are made for the first quarter of the year 1979.

Table 3 reconfirms the overall superiority of the noncausal model found in the

monthly data. In fact, the differences in the forecast performance between the

noncausal and causal models appear to be even larger than in the monthly data

set. In most cases, the qualitative differences are also statistically significant even

at the 1% significance level. Furthermore, the lag length selection method seems to

be less important than in the case of the monthly data set. It is only at the eight-

month forecast horizon that the noncausal model performs clearly better when the

AIC is employed compared to the other alternatives.

5 Conclusion

In this paper, we have compared the forecast performance of the noncausal AR

model of Lanne and Saikkonen (2011) to that of the conventional causal AR model.

2 A detailed description of the data set can be found in Lanne et al. (2011).
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We have examined a comprehensive monthly data set consisting of macroeconomic

and financial time series as well as a more limited collection of quarterly U.S. time

series.

The noncausal model tends to yield superior multiperiod forecasts compared

to the causal model. The improvement in forecast accuracy is not surprising given

that noncausality was found for a vast majority of the time series considered. For

the quarterly time series, the improvement in forecast accuracy due to allowing

for noncausality is even greater than for the monthly series. With the exception of

the interest rate and asset return series considered, the results also lend support

to the adequacy of Student’s t distribution for the errors. The question of whether

the noncausal AR model is superior in forecasting these financial variables under

a more suitable distributional assumption is left for future research.
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Table 1: Summary of relative MSFEs between the noncausal AR(r,s) model and the causal AR(p)
model based on different model selection criteria.

Model Selection Mean/Median/ Forecast horizon (months)
Fraction 1 3 6 9 12 24

All series

BIC Mean 1.0289 0.9972 0.9953 0.9957 0.9959 0.9963
Median 1.0032 0.9979 0.9991 0.9996 0.9997 0.9998
Fraction 0.4096 0.6145*** 0.6506*** 0.5783** 0.5361 0.5361

AIC Mean 1.0882 1.0378 1.0987 1.0067 1.0052 0.9829
Median 1.0119 0.9977 0.9982 0.9991 0.9998 0.9993
Fraction 0.3735 0.5482* 0.6024*** 0.5602* 0.5181 0.5663**

Excluding interest rates and asset prices (133 series remaining)

BIC Mean 1.0079 0.9909 0.9926 0.9936 0.9933 0.9927
Median 1.0012 0.9977 0.9984 0.9993 0.9995 0.9997
Fraction 0.4361 0.6165*** 0.6917*** 0.6090*** 0.5940** 0.5564*

AIC Mean 1.0489 0.9976 0.9913 0.9921 0.9911 0.9851
Median 1.0084 0.9961 0.9959 0.9979 0.9995 0.9992
Fraction 0.3985 0.5865** 0.6617*** 0.6090*** 0.5564* 0.5564*

Notes: Each entry is the indicated summary measure of the distribution of the ratio between the MSFE for the

noncausal AR(r, s) model to the MSFE of the causal AR(p) model for the lag selection listed in the first column

and the forecast horizon indicated in the column heading. Fraction is the percentage of variables with the relative

MSFE below unity (i.e., the number of cases for which the AR(r, s) model yields a smaller MSFE than the

AR(p) model). The statistical significances of the differences implied by the fractions are tested using the sign

test statistic of Diebold and Mariano (1995). In the table, *, **, and *** denote the 10%, 5% and 1% significance

levels, respectively. In the upper panel, four variables for which the estimation of the AR(r, s) model failed to

converge are left out leaving 166 time series in total.
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Table 2: Relative MSFEs in different categories of the monthly time series.

Model Selection Mean/Median/ Forecast horizon (months)
Fraction 1 3 6 9 12 24

(A) Income, output, sales, capacity utilization (38 series)
BIC Mean 1.0031 0.9965 0.9907 0.9909 0.9917 0.9958

Median 1.0011 0.9999 0.9997 0.9994 0.9995 1.0001
Fraction 0.4737 0.5263 0.6842*** 0.5789 0.6316** 0.3947

AIC Mean 1.0176 0.9943 0.9902 0.9912 0.9881 0.9851
Median 1.0073 0.9990 0.9987 0.9992 0.9992 0.9991
Fraction 0.3947 0.5526 0.6579** 0.5263 0.6053* 0.6053*

(B) Employment and unemployment (23 series)
BIC Mean 1.0283 0.9876 0.9917 0.9934 0.9959 0.9967

Median 0.9988 0.9848 0.9920 0.9969 0.9990 1.0000
Frac 0.5217 0.6957** 0.6522** 0.6957** 0.6087 0.5217

AIC Mean 1.1288 1.0024 0.9913 0.9946 0.9895 0.9852
Median 1.0033 0.9937 0.9892 0.9971 0.9997 0.9990
Fraction 0.4783 0.6087 0.6957** 0.6087 0.5652 0.5652

(C) Construction, inventories and orders (37 series)
BIC Mean 1.0013 0.9953 0.9949 0.9987 0.9962 0.9924

Median 1.0009 0.9988 0.9991 0.9997 0.9999 0.9997
Fraction 0.3784 0.5676 0.7297*** 0.6216** 0.5405 0.6216**

AIC Mean 1.0507 0.9895 0.9872 0.9915 0.9930 0.9846
Median 1.0049 0.9904 0.9941 0.9991 0.9995 1.0004
Fraction 0.4865 0.6757*** 0.6486** 0.6486** 0.5135 0.4865

(D) Interest rates and asset prices (33 series)
BIC Mean 1.1137 1.0222 1.0063 1.0044 1.0066 1.0107

Median 1.0161 0.9988 1.0001 1.0002 1.0005 1.0001
Fraction 0.3030 0.6061* 0.4848 0.4545 0.3030 0.4545

AIC Mean 1.2465 1.2001 1.5315 1.0660 1.0620 0.9740
Median 1.0486 1.0332 1.1011 1.0183 1.0024 0.9995
Fraction 0.2727 0.3939 0.3636 0.3636 0.3636 0.6061*

(E) Nominal prices, wages and money (35 series)
BIC Mean 1.0067 0.9825 0.9928 0.9912 0.9903 0.9870

Median 1.0066 0.9927 0.9949 0.9980 0.9931 0.9987
Fraction 0.4000 0.7143*** 0.6857*** 0.5714 0.6000* 0.6857***

AIC Mean 1.0284 1.0065 0.9970 0.9919 0.9933 0.9856
Median 1.0304 0.9996 0.9955 0.9939 0.9971 0.9961
Fraction 0.2571 0.5143 0.6571** 0.6571** 0.5429 0.5714

Notes: In the table, the categories (A-E) are the same as in Marcellino et al. (2006). See also the notes to Table

1.
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Table 3: Summary of relative MSFEs in quarterly macroeconomic time series.

Model Selection Mean/Median/ Forecast horizon (quarters)
Fraction 1 2 3 4 5 8

All 18 series

BIC Mean 0.9823 0.9592 0.9690 0.9673 0.9710 0.9967
Median 0.9836 0.9791 0.9790 0.9828 0.9888 1.0011
Fraction 0.6667** 0.7778*** 0.7778*** 0.7778*** 0.8333*** 0.3889

AIC Mean 0.9932 0.9598 0.9713 0.9642 0.9694 0.9854
Median 0.9849 0.9625 0.9772 0.9673 0.9849 0.9935
Fraction 0.6111 0.7778*** 0.6667** 0.6667** 0.7222*** 0.7778***

Notes: See the notes to Table 1.
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