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I. Introduction 

A well-known feature of empirical studies in environmental and resource economics is 

that elicited measures of the maximum amount people indicate that they are willing to pay for a 

good (WTP) often differs substantially from the minimum amount they must be paid in order to 

forego it (the willingness to accept, WTA).  A variety of explanations for this disparity have been 

proposed, including loss aversion (Thaler, 1980) and a limited degree of substitutability between 

the environmental good and other marketed goods (Hanemann, 1991).  However, in a review of 

several empirical studies of the WTP-WTA gap, Horowitz and McConnell (2002) report that in 

addition to these other factors, uncertainty about the value of non-marketed products, such as  

environmental goods also likely contribute to the observed difference.  

Isik (2004) attempts to systematically explore the relationship between uncertainty 

regarding an environmental quality improvement and the WTP-WTA gap.  As his primary result 

he claims (his Proposition 1) that uncertainty causes the WTA to exceed WTP and that increases 

in uncertainty cause this gap to increase.
1
  To prove this proposition Isik uses second order 

Taylor’s series approximations of a risk averse agent’s indirect utility function about several 

initial positions.  Reasoning inappropriately from these approximations, Isik asserts (i) that in the 

absence of uncertainty WTA=WTP if and only if the indirect utility function is linear in both 

income and the environmental improvement, and (ii) as uncertainty is introduced (or increased) 

WTA rises and WTP falls by identical amounts, making WTA>WTP.  Both claims are importantly 

incorrect. 

First, the only if portion of claim (i) is false.  Consider as a simple counterexample the 

indirect utility function 
)(0005.0

0
01),(

qy
eqyV


  where y denotes income and q an 

environmental quality index.  This function is standard in the sense that it is strictly concave in 

both y and q, and as such is also nonlinear both arguments.   Now let y0=5,000, q=2,000 and 

consider a certain environmental improvement  = 300. As can be readily verified, 

WTP=WTA=$300.
2
 Thus the indirect utility function can be nonlinear in both y and q and still 

yield WTP=WTA.   

Still more problematically, Isik’s claims in (ii) (i.e., his Proposition 1) are also false.  In 

fact, for an agent who is risk averse in the environmental good, the introduction of uncertainty 

causes both WTA and WTP to fall. Further WTA need not exceed WTP and increases in 

uncertainty need not increase the WTA-WTP gap. This paper reveals the problems with these 

claims. In addition to pointing out the errors in his analysis, we establish as a general matter that 

increases in uncertainty causes both WTA and WTP to fall, and that the WTA –WTP gap can be 

expressed as a function of the WTA at two different income levels. 

                                                           
1
 Actually, Isik states the opposite (e.g., that uncertainty causes the compensating variation (WTP) to exceed the 

equivalent variation (WTA) and that increases in uncertainty further increase this discrepancy). However, as he 

purports to prove the opposite in his development, we assume that the text reflects an editing error.  
2
 As articulated below in the text, WTP and WTA can be derived from the Hicksian welfare measures of 

compensating variation and equivalent variation.  In this example, WTP= 300 solves ),(),(  qWTPyVqyV , 

and WTA= 300 solves ( , ) ( , )V y q V y WTA q   . 
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2. Isik’s Development and Errors. 

2.1 Assumptions and Notation. Following Isik, define an agent’s utility function as ),,( qyxU

where x is a vector of market goods, q is a non-marketed environmental good and y is income.  

The agent solves ),,( qyxUMax
x

subject to ypx   where p is a vector of prices.  The solution 

yields the vector of demand functions ),,(* qypxx  , which allow definition of the indirect 

utility function ),,(),,( * qyxUqypV  .  For notational ease, in what follows we suppress the 

price variable from the indirect utility function.  Further, for specificity we define a reference 

level of income, y=y0.  Thus, we write indirect utility as ),( 0 qyV . 

Following Isik assume also that the marginal utilities of both the environmental good and 

income are positive, e.g, 0qV and 0yV  , that the agent has a linear utility of income, 0yyV , 

is risk averse in the environmental good 0qqV  and that y and q are complements in indirect 

utility, or 0yqV . Finally, let environmental quality improvement  be a random variable with 

mean   and variance .  

We calculate WTP and WTA from the Hicksian welfare measures of compensating 

variation (C) and equivalent variation (T), respectively (Freeman, 2003). Specifically 

compensating variation is derived from  

 0 0( , ) ( , )V y q E V y C q          (1) 

and equivalent variation from    

 0 0( , ) ( , )V y T q E V y q   ,       (2) 

 where E is the expectation operator defined over the necessarily random indirect utility.   

 

2.2 An Overview of Isik’s Results.
3
 To develop the compensating variation, C, Isik modifies (1) 

with the correct but unnecessarily cumbersome identity 

 0 0( , ) ( , )cE V y C q V y C R q      ,      (3) 

where R
c
 is the additional risk premium that the agent is willing to pay to replace the random 

improvement with its mean  , as a certainty. Taking a pair of second order Taylor series 

approximations for the indirect utility function at different reference points Isik approximates the 

compensating variation as 

                                                           
3 For a more complete development of material in the first part of this subsection see Isik (2004). Appendix A 

develops more fully the corrections to Isik’s analysis (e.g., equations (4’) and (6’)).  
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Isik approximates the equivalent variation in a similar manner.  First he modifies 

equation (2) by inserting a risk premium R
T
 in the left side of the equation and replaces the 

random on the right side of equation (2) with its mean  , received as a certainty,  to get 

),(),( 00  qyVqRTyV T .       (5) 

Taking a pair of second order Taylor series approximations, again at different points, Isik 

approximates the equivalent variation as 

y

qq

y

qqq

V

V

V

VV

T
2

2

2







 .        (6) 

Comparing (4) to (6) and recalling that 0qqV  and 0yV  Isik concludes that uncertainty drives 

a wedge between compensating variation (C) and equivalent variation (T), with the former 

decreasing and the latter increasing in a symmetric fashion as uncertainty increases. 

These conclusions, however, are importantly incorrect because both C in (4) and T in (6) 

are miscalculated. In both (4) and (6), Isik fails to account for the differing reference points used 

in his sequential Taylor series approximations.   In his development of (6) Isik further errs by 

incorrectly inserting risk premium R
T
 into the left hand side of equation (5): The risk premium is 

not a correction to T that an agent pays to achieve certainty in place of the random .   Once the 

agent sells the gamble for T, the uncertain  is irrelevant.   Rather, the R
T
 is the amount the agent 

is willing to pay from the reference position ),( 0 qy
 
to replace the random   with its 

expected value  , as a certainty.   Thus R
T
 must satisfy  0 0( , ) ( , )TE V y q V y R q    . 

Making the appropriate adjustments, the corrected versions of (4) and (6) become 

y
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
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where V, Vy, Vq and Vqq denote values of indirect utility and associated derivatives evaluated at 

the point (y0, q,); yV̂ and qqV̂ denote values of derivatives evaluated at point ),( 0 


qCy
 
and;  

yV
~

and qqV
~

denote values of derivatives evaluated at ),( 0 qy . 
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Inspection of the corrected expressions for C and T in )'4( and )'6( allows two 

observations. First, comparing the corrected equivalent variation in )'6( with Isik’s formulation 

in (6), notice that the sign on the  term switches from negative to positive with 

, 0, 0y y qqV V V   and 0qyV  , indicating that uncertainty causes the equivalent variation to fall 

rather than increase with uncertainty.  Second, comparing across the corrected expressions for C 

and T in )'4( and )'6( observe that beyond the conclusion that uncertainty in q causes both 

compensating and equivalent variations to fall, little can be said.  In particular, no conclusions 

may be drawn regarding the relative magnitude C and T.  The corrected expression for 

compensating variation in )'4(  allows no insight into the absolute magnitude of C, since the right 

hand side is itself a function of C through yV


 and qqV


. The risk adjustment terms ˆ ˆ
qq yV V  )'4(

and
qq yV V  in )'6( are evaluated at different points.  Also, the risk adjustment term in )'6( is 

weighted by interaction factor   /y qy yV V V  which is of indeterminate size.  

 

3. Equivalent Variation, Risk and Improved Taylor Series Approximation  

3.1 Equivalent Variation and Risk. Of the two preceding observations, the most general is that 

increasing risk causes the equivalent variation T as well as the compensating variation C to fall.  

We summarize the relationship between uncertainty, T and C with the following Proposition.  

Proposition IA. Given uncertainty about an environmental quality improvement 

and an agent who is risk averse in the environmental good, an increase risk will 

reduce both the equivalent variation (T) and the compensating variation (C).   

Proof: Denote an agent’s indirect utility function by  ,V y q . Assume that 0, 0,y qV V  and 

0qqV   (e.g., strict concavity in q).  Consider two prospects, each involving a favorable but 

uncertain change in environmental quality from an initial position q and with initial income at y0.  

Let   denote the uncertain change in the first prospect and z the uncertain change in the second 

prospect, where the pdf of z is a mean-preserving spread (MPS) of the pdf of .  The expected 

utility of the prospects are therefore     and 0 0E V y ,q+ Δ E V y ,q+ z       . 

 

Uncertainty and the Equivalent Variation (T). Let  Δ0T y ,q+ denote the willingness to accept 

the loss of favorable prospect  , and  0T y ,q+ z denote the willingness to accept the loss of the 

favorable prospect z. By definition,     Δ Δ0 0 0E V y ,q+  = V y +T y ,q+ ,q    and 

    0 0 0E V y ,q+ z  = V y +T y ,q+ z ,q   . Since z is a MPS  of  , strict concavity of V with 

respect to q implies that     Δ0 0E V y ,q+  > E V y ,q+ z        by Theorem 2 of Rothschild and 

Stiglitz (1970).  Hence , 

 

     Δ0 0 0 0V y +T y ,q+ ,q >V y +T y ,q+ z ,q . 
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By yV >0 ,    0 0 0 0y +T y ,q+ Δ > y +T y ,q+ z or    0 0T y ,q+ Δ >T y ,q+ z , as asserted.  

 

Uncertainty and the Compensating Variation (C). Let  0C y ,q+ Δ denote the willingness to pay 

for the favorable prospect  , and  0C y ,q+ z denote the willingness to pay for the favorable 

prospect z. By definition          0 0 0E V y C y ,q+ ,q+  = V y ,q  and  

 

      0 0 0E V y C y ,q+ z ,q+ z  = V y ,q        (7) 

 

By Theorem 2 of Rothschild and Stiglitz (1970), for any 00 <k < y ,
 

          0 0E V y k,q+ Δ  > E V y k,q+ z . Thus, 

 

           0 0 0 0E V y C y ,q+ Δ ,q+ Δ  > E V y -C y ,q+ Δ ,q+ z      (8) 

 

and by the favorability of z, 

 

            0 0 0 0E V y ,q+ z >V y ,q = E V y C y ,q+ Δ ,q+ Δ .      (9) 

 

Combining (8) and (9) yields, 

 

      0 0 0 0E V y ,q+ z >V y ,q > E V y -C y ,q+ Δ ,q+ z      .    (10)    

 

By the intermediate value theorem and yV >0 , there exists a y* ,    0 0 0y > y* > y C y ,q+ Δ , 

such that    0E V y*,q+ z =V y ,q   .  Then by (7),  0 0y*= y C y ,q+ z .  Thus, 

    0 0 0 0y C y ,q+ z > y C y ,q+ Δ , or     0 0C y ,q+ Δ >C y ,q+ z
 
as asserted.    

 

3.2 Improved Taylor Series Approximations of C and T. Although we can draw no general 

conclusions regarding the relative magnitude of C and T, the following more succinct 

development makes some progress in clarifying the relationship between the two variables in the 

presence of uncertainty regarding the level of an environmental improvement. We generate an 

expression for C, by making a second order Taylor series approximation to ),( 0  qCyV  

about the point ),( 0 qyV . Similarly, we generate an expression for T, by using a second order 

Taylor series approximation to ),( 0  qTyV  about the point ),( 0 qyV . In each case we follow 

Isik’s assumption that 0yyV .  For C, the Taylor Series approximation for any particular   is 

qqqyqy VVCVCVVqCyV
2

),(
2

0


      (11) 
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where, as above, qyqy VVVV ,,, and qqV  denote the implicit function values and derivative values 

evaluated at ),( 0 qy .  Taking the expectation of both sides of (11) (noting that  22 )(E ), 

and solving yields 

qyy

qq

qyy

qqq

VV

V

VV

VV

C









2

2

2


       (12) 

The equivalent variation T is approximated similarly, except that the correct defining 

equation is ),(),( 00 qTyVqyEV  . Using a Taylor’s second order approximation to 

),]([),( 00  qTTyVqyV about the point ),( 0 qTyV  and solving yields 
 

2

0([ ] , )
2

y q qy qqV y T T q V TV V TV V


            (13)
 

 

where qyqy VVVV
y

~
,

~
,

~
,

~
,

 and qqV
~

 are evaluated at the point ),( 0 qTyV  .Taking the expectation of 

both sides, and again recalling that  22 )(E , (13)  may be solved for T as 

yqy

qq

qyy

qqq

VV

V

VV

VV

T ~~

~

2
~~

~

2

~
2












       (14) 

Notice that C in (12) and T in (14) are identical in form and differ only in that their associated 

derivatives are evaluated at the different points, ),( 0 qy and ),( 0 qTy  , respectively.   Note 

further that if (14) is rewritten to give a second order approximation for T at the point 

  0 0y -T y ,q ,q ,
 
it will be identical to the second order approximation for C at ),( 0 qy , 

consistent with a similar finding by Weber (2003).  This last observation is important because it 

allows reduction of the comparison ),(),( 00 qyCqyT  to an expression in T values only, via the 

comparison 

),(),(),(),( 1000 qyTqyTqyCqyT         (15) 

where  1 0 0y = y -T y ,q , which indicates that, at least up to a second order approximation (and 

with Vyy=0) the relationship between T and C is determined by the effect of changes in income 

on an agent’s equivalent variation (WTA). 

Looking at (14) notice that under Isik’s rather restrictive assumptions regarding the 

indirect utility function T does increase with income (at least up to a second order 

approximation), meaning that T>C, as Isik asserts but fails to demonstrate.  To see this, notice in 

the expression for T in (15) that only qV  changes with income ( qV  moves directly with income 

since 0qyV  ). All other terms remain constant because 0yyV  , and the higher order terms qqyV

and qyyV are absent from a second order approximation).  This conclusion, however, is specific to 
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his assumptions about the indirect utility function.  For example, consider a change in the sign on 

the cross-partial term to 0qyV   . In this case T moves inversely with income making C>T ( thus 

contradicting Isik’s claim that his Proposition 1 does not require 0qyV    --see his note 1, p.3.). 

As a simple example consider the utility function   2V y,q =100y+100q -0.05yq -0.01q .  Let

0y = 800, q= 50,and the uncertain environmental improvement be represented by the probability 

distribution     1 2 1Δ ,Δ , prob Δ = 50,100,.5 . Over the relevant range, y q yy qqV >0,V >0,V =0,V <0 

and qy V <0 . Then C= 46.5334 and T= 44.7436 solve (1) and (2) respectively, making C>T.  

Finally, Isik’s claim that the WTA-WTP gap necessarily widens with introduction of 

uncertainty in the environmental quality improvement is false as well, even under his most 

restrictive set of assumptions. As a counterexample consider the utility function  

  2V y,q =10y+2yq -0.002yq , which has y q yy qq qyV >0,V >0,V =0,V <0, and V >0  over the 

environmental quality interval 0 <q <500.   Let 0y = 500, q=110,  and the environmental 

improvement Δ= 30 as a certainty. Then C= 89.7129 and T= 109.3295 solve (1) and (2) 

respectively, making T     C= 19.6166. Maintaining this structure, but replacing Δ= 30 with a 

‘riskier’ mean-preserving spread reflected in the probability distribution 

    Δ Δ Δ1 2 1, , prob = 20,40,.5 , C= 86.7470 and T= 104.9563 solve (1) and (2) respectively, 

making T     C= 18.2093. Thus the introduction of uncertainty may narrow rather than widen the 

WTA-WTP gap, contrary to Isik’s claim.  Notice again that both WTP and WTA fall with the 

introduction of uncertainty, but the WTA-WTP gap narrows here because WTA falls faster than 

WTP.   

 

4. Conclusion 

Empirical evidence suggests that uncertainty regarding the qualities of non-marketed 

goods may importantly affect the WTP-WTA gap, and we commend Isik for attempting to 

formalize this relationship.  Isik, however, errs importantly in his development.  Contrary to his 

claim, WTP may equal or exceed WTA even with uncertainty.  Further, the introduction of 

uncertainty causes both WTA and WTP to fall and the WTP-WTA gap may decrease or increase 

with the introduction of uncertainty in an environmental quality improvement, even under Isik’s 

strictest set of assumptions regarding the indirect utility function.  

Finally, we observe that the use of Taylor series approximations offers a less than ideal 

method for isolating the relationship between compensating and equivalent variations when the 

contemplated changes in assets are not infinitesimal.  The accuracy of such approximations are 

only assured in a neighborhood of the point at which its derivatives are evaluated.  Regarding the 

use of second order approximations in representing individual behavior under risk, it should be 

noted that the widely accepted assumption of decreasing absolute risk aversion in income 

requires the third order derivative of indirect utility with respect to income to be positive.   
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Appendix A.  A More Complete Corrected Development of WTP and WTA Using the Approach 

Taken by Isik. 

 

This appendix more fully develops the statements of WTP and WTA expressed in the text as 

equations (4’) and (6’).  

A.1. Calculating WTP.  

To derive WTP Isik takes a second order Taylor series approximation of the right hand side of 

(3) about the point (y0, q). Denoting ),( 0 qyV as V this yields  

2

0( , ) ( ) ( )
2

c c c

y q qy qqV y C R q V C R V V C R V V


          .  (A1) 

Using (1) in the text and solving for C yields   

c

qy

qqq

R
yVV

VV

C 





 2

2

.        (A2) 

   To eliminate R
c
 from (A2), Isik first obtains a Taylor series approximation of 

),( 0  qCyV  for a given  about the point 0( , )y C q   as 

qqq VVVqCyV


2

)(
)(),(

2

0


      (A3) 

Where V


denotes the reference indirect utility and derivative values evaluated at point 

).,( 0  qCy
 
He next obtains a Taylor series approximation of ),( 0  qRCyV C

 about 

the point 0( , )y C q  as 

y

CVRVqCyV


 ),( 0         (A4) 

Taking the expectation of (A3) with respect to  yields 

 0( , )
2

qqE V y C q V V


    .        (A5) 

Using equation (3), we equate the right hand sides of (A4) and (A5) to obtain 
y

qqC

V

V
R 



2


 .  

Substituting this expression for R
C  

into (A2) yields (4') in the text.  
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A.2 Calculating WTA.   

Starting with the corrected insertion of risk premium R
T
 stated as (5')  in the text, take a 

second order Taylor series approximation of the right hand side of the equation, 
T

0V(y - R ,q+ Δ),

about the point  0y ,q as  

qy

T

qqqy

TT VRVVVRVqRyV 



2

),(
2

0     (A6) 

Next, take second order Taylor series approximation of the left hand side of (5'),   0V y +T,q ,

about  0y ,q . This yields 

yTVVqTyV  ),( 0         (A7) 

Substituting (A6) and (A7) into (5')  and solving for T generates the following expression. 

T

y

qyY

y

qqq

R
V

VV

V

VV

T
)(2

2







 .       (A8) 

To eliminate R
T 

we use the corrected definition from the text above (5'),  

 0( , ) ( , )T

oV y R q E V y q    .       (A9) 

Taking first a second order Taylor series approximation of ),( 0  qRyV T
 about the point 

),( 0 qy , yields.  

y

TT VRVqRyV
~~

),( 0  ,       (A10) 

where V
~

 denotes values of indirect utility and the derivative evaluated at reference point

),( 0 qy .  Next, take a second order Taylor series approximation of 0( , )V y q  for a given  

about the reference point Δ as0(y ,q+ ) 
 

qqq VVVqyV
~

2

)(~
)(

~
),(

2

0


  

Then taking the expectation of both sides we have 

 0( , )
2

qqE V y q V V


           (A11) 
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Replacing the left and right terms in (A9) with the right hand sides of (A10) and (A11), and 

solving yields 
y

qqT

V

V
R ~

~

2


 .  Replacing R

T 
with this expression in (A8) yields the expression 

(6') in the text.  
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