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1. Introduction 

 The mainstream approach to monetary policy in the last thirty years is focusing on 

short term interest rates and downplays the significant role of monetary aggregates. The 

reason for the abandonment of monetary aggregates was not theoretical but empirical: the 

established link between money and inflation was severed in recent decades when capital and 

financial markets’ innovation produced new interest bearing assets that rendered monetary 

aggregates inaccurate and less relevant. These empirical findings put money and its growth 

rate in the backstage of empirical macroeconomic forecasting. The failure of money to 

forecast macroeconomic variables though may be explained by the “Barnett critique”
1
: the use 

so far, by central banks and economists in general, of the traditional simple-sum monetary 

aggregates. Barnett (1997) linked the deserved decline in the policy-importance of monetary 

aggregates to the specific restrictions of simple sum aggregation: the various monetary 

components are assigned an equal and intertemporally constant weight. Central banks facing 

inaccuracies and paradoxes using simple-sum aggregates as their key policy variable, 

abandoned money all together. Barnett (1978, 1980) developed and advocates the use of the 

theoretically correct in terms of economic aggregation and index number theory Divisia
2
 

monetary aggregates. The simple sum aggregation method used widely by central banks, 

economists and investors even today, has been criticized heavily in the literature since Fisher 

(1922), Moroney and Wilbratte (1976), the seminal paper of Barnett (1980) and also Barnett 

(1997), Boughton (1981), Batten and Thornton (1985), Fisher and Fleissig (1995), Schunk 

(2001), Darrat et al. (2005)  and more recently, Barnett and Chauvet (2010), McCallum and 

Nelson (2011). As Irving Fisher (1922) puts it “…the simple arithmetic average produces one 

of the very worst of index numbers… The simple arithmetic [index] should not be used under 

any circumstances…” Barnett (1980) was the first to point out the unrealistic assumption for 

perfect substitution of the components of the simple sum aggregates. Taking into account the 

microeconomic aggregation theory, which offers an attractive alternative approach to the 

definition of money compared to the simple sum aggregation method, Barnett (1980) 

constructed with the appropriate modifications, the Divisia monetary aggregates. These 

aggregates were named after the Divisia index which serves to apply different weights to 

different assets in accordance with the degree of their contribution to the flow of monetary 

services in an economy. 

 Many recent studies use innovative new techniques in trying to forecast 

macroeconomic variables that build on VAR models. Pesaran et al. (2009) use a global vector 

autoregressive (GVAR) model for one and four quarters ahead forecasts for real output, 

inflation, real equity prices, exchange rates and interest rates for 33 countries. There is a 

number of papers that compare the forecasting performance of VAR and DSGE models: 

Smets & Wouters (2004), Del Negro et al. (2007), Rubaszek & Skrzypczyński (2008) and 

Bache, Jore, Mitchell & Vahey (2011) estimate VAR and DSGE models to forecast some key 

U.S. macroeconomic variables. Rubaszek & Skrzypczyński (2008) compare the forecast 

performance of a DSGE, the Survey of Professional Forecasters (SPF) and VAR models and 

come to the conclusion that the proposed DSGE model is not able to significantly outperform 

the SPF in forecasting output growth, inflation or interest rates in the United States. They also 

found that the DSGE model generates forecasts which are very close in accuracy to the SPF 

predictions. Binner et al. (2010) use two new in macroeconomics techniques, namely 

recurrent neural networks and kernel recursive least squares regression, in order to forecast 

                                                             
1
 The phrase was coined by Chrystal and MacDonald (1994) and Belongia and Ireland (2012). 

2
 François Divisia (1889-1964) was a French economist most noted for proposing and analyzing the Divisia 

Index and the Divisia monetary aggregates index (Divisia 1925). 
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the U.S. inflation with Divisia and simple sum aggregates. Many empirical studies such as 

Barnett, Offenbacher & Spindt (1984), Chrystal & MacDonald (1994), Belongia (1996) and 

more recently Barnett & Serletis (2000), Serletis (2006), Barnett, Jones & Nesmith (2008) 

Barnett (2009), Serletis and Rahman (2013) and Serletis, Istiak and Gogas (2013) find strong 

evidence that Divisia indices outperform simple sum monetary aggregates as far as macro-

variable forecasting and the link between money and macroeconomic activity is concerned. 

Schunk  (2001) and Elger,  Jones  &  Nilsson (2006) study the prediction accuracy on the real 

GDP for the U.S. using the simple sum and the Divisia monetary aggregates. They both use 

the VAR and RS-VAR methodologies. Schunk (2001) finds that the Divisia aggregates 

provide more accurate predictions of U.S. real GDP in contrast to the simple sum aggregates, 

especially at the broader levels of monetary aggregation. In contrast, Elger, Jones & Nilsson 

(2006) results do not favor the Divisia over the simple sum aggregates. 

In this paper, we empirically compare the forecasting ability of the simple sum and the 

Divisia monetary aggregates in terms of U.S. output. In doing so, we employ a machine 

learning approach with the use of a Support Vector Regression methodology that has not been 

used so far, to the best of our knowledge, in this empirical setting.  

The paper is organized as follows: section 2 presents the data used and discusses the 

empirical methodology of the Support Vector Regression. The empirical results can be found 

in section 3. Section 4 is devoted in the robustness of our approach and the paper concludes in 

section 5. 

 

2. Data and methodology 

 We use data on five levels of monetary aggregation, namely M1, M2M, M2, MZM 

and ALL, covering the period 1967Q1 to 2011Q4. We used these levels of monetary 

aggregation for the simple sum, CFS Divisia and MSI Divisia monetary aggregates. CFS 

Divisia stands for the Divisia monetary aggregate series that are produced and maintained by 

the Center for Financial Stability (CFS) program Advances in Monetary and Financial 

Measurement (AMFM). The simple sum, the MSI
3
 Divisia and the real GDP data were 

obtained from the Federal Reserve Bank of St. Louis (FRED) database. 

 In this study we approach the forecasting problem from a Machine Learning 

perspective. The system was modeled using a Support Vector Regression as proposed by 

Vapnik (1995), which uses an ε-insensitive loss function for solving regression problems. The 

main idea of using the ε-insensitive loss function is to find a line that fits the current training 

data with a deviation less or equal to the value of the parameter ε (Figure 1).  

                                                             
3
 Monetary Services Indexes (MSI). Anderson, Richard G. and Barry E. Jones, "A Comprehensive Revision of 

the Monetary Services (Divisia) Indexes for the United States", Federal Reserve Bank of St. Louis Review, 

September/October 2011, pp. 325-359. 
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The model is evaluated using a part of the dataset that was not used in the training 

process often referred to as testing dataset. Quite often, however, given ε, the insensitive SVR 

model cannot cope with the dataset, i.e. there are remote data points outside the ε-zone. Error 

tolerance can be introduced to the model through the slack variables    and   
  and adjusted 

through a weight C: a predetermined parameter (C > 0) that boosts the slack variables in the 

loss function.  
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Figure 1: The ε-insensitive SVR model. All the data points should lie inside the 

   gray zone.  
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The trade-off between the generalization ability and the accuracy of the model in the sample 

is set by adjusting ε and C. Parameter C plays the role of a regularization parameter: high 

values favor solutions with few misclassifications; low values produce low complexity 

solutions that are easier to generalize. 

The dual form of the problem described in (2) takes the form: 
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where      
  are the Lagrange multipliers taken from the Lagrangian of the primal 

objective function. The solution of (3) is   
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Figure 2: The error tolerance paradigm. The errors     are multiplied by C in 

the loss function. 
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This is often referred to as the Support Vector Machines regression expansion since   is 

constructed as a linear combination of the training patterns   . 

When the data points describe a nonlinear phenomenon then even the error-tolerant 

model cannot handle it successfully. In these cases the SVR methodology is coupled with a 

non-linear Kernel mapping, projecting the data points to a higher dimensional space, called 

feature space. A linear regression is, then, fitted in the created feature space and when found it 

is projected back in the data space (see Figure 3).  

 

Figure 3: A nonlinear SVR case in a 2 dimensional data space  

 

In our experiments we used two kernels: a) the linear and b) radial basis function 

(RBF) defined as: 

Linear Kernel   (   )   
     (6) 

 

RBF Kernel   (   )   
  ‖   ‖  (7) 

 

where   
 

   
 is the parameter adjusting the variance    of the Gaussian function. 

The search for the optimal parameter setup in both cases was performed in a coarse-to-fine 

grid search using a 5-fold Cross Validation (CV) evaluation scheme. A 3-fold cross validation 

example is shown in Figure 4, below. 
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In this type of grid search, the parameters are initially evaluated in a large step grid in 

order to achieve a low accuracy image of the parameters performance. Then, we seek 

improved results using a denser grid focusing only in the parts of our research area where the 

model achieved top performance. We can repeat the procedure multiple times. In Figure 5, we 

provide a graphical representation of a three-iteration coarse-to-fine grid search. Optimum 

results in terms of forecasting performance are depicted with gray color. As the area becomes 

darker, the grid step becomes smaller and the search finer. Coarse-to-fine grid search is a 

lower complexity bypass of the exhaustive search in the finer level.       

 

 

Training Testing 

Model 

Evaluation 

model 

Training Testing model 

Training Testing model 

Initial 

Dataset 

x1 
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Figure 5: The coarse-to-fine grid search. From the coarser search, we advance to 

denser ones as the regions become darker (when darker represents better results). 

Figure 4: Overview of a 3-fold Cross Validation Evaluation System. It shows that each 

subset is used as a testing sample while the others are used for training the model. 
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In a machine learning scheme, training results in overfitting when the model produced 

is significantly affected by possible noise in the sample in hand instead of the true underlying 

relationship that describes the phenomenon. Usually, overfitting yields a very high 

performance on the training step and significantly lower accuracy on the testing step. k-fold 

cross validation, is adopted to avoid overfitting. The dataset is cut into k chunks and the 

training-testing steps are repeated k times. In each turn a different chunk is used as the test 

dataset, while the rest k-1 chunks are grouped together to form the training dataset. The model 

is evaluated by averaging the performance of the model on every fold.  

The training dataset spans from the first quarter of 1967 to the last quarter of 2007, 

while the testing dataset
4
 includes the period 2008Q1-2011Q4. We used four lags of the real 

GDP and each monetary aggregate as independent variables in our tests in the effort to 

forecast real GDP one quarter ahead. 

 

  (  )   [(  (    )   (    ))   
 
] 

 

where y is the real GDP and m represents the corresponding monetary aggregate used in 

forecasting. According to the above, we select an optimum in terms of in-sample accuracy set 

of parameters for each one of the fifteen monetary aggregates used and for each of the two 

kernels. 

The next step is to evaluate the optimized forecasting models obtained above in out-

of-sample forecasting. As described before, we reserved the period 2008Q1-2011Q4 data for 

this purpose. These out-of-sample forecasts are compared to each other and evaluated by the 

root mean square error (RMSE) and mean absolute percentage error (MAPE) metrics. Thus, 

we produced these forecasting error metrics for the optimized (in terms of in-sample 

forecasting accuracy) parameter values for all three monetary aggregates (simple-sum, CFS 

Divisia and MSI Divisia), for all five levels of monetary aggregation (M1, M2M, M2, MZM 

and ALL) and for both kernels (linear and RBF). 

 

3. Empirical Results 

First, we perform a grid search for the optimum parameter values as it is described in 

the previous section. According to this procedure, the parameter values used and the total 

number of models tested are presented in Table 1.  

 

                                                             
4
 The out-of-sample testing data were not used in the training and testing steps. Many scientists accept the in-

sample testing as a second step in the training process, and the out-of-sample testing as the real model 

evaluation. 
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Table 1. Optimum Kernel Parameters Grid Search. Total combinations 

tested for linear and RBF kernel in coarse and fine search. 

Panel A. Coarse Search 

Parameter Min Max Step Total 

Linear Kernel 

    c 1 300 2 150 

ε 0.0001 0.0040 0.0002 20 

Total combinations per monetary aggregate 3,000 

(A) Total combinations for 15 aggregates 45,000 

RBF Kernel 

    c 2 300 2 150 

g 0.1 5.0 0.2 25 

ε 0.0001 0.0020 0.0002 10 

Total combinations per monetary aggregate 37,500 

(B) Total combinations for 15 aggregates 562,500 

Panel B. Fine Search 

Linear Kernel   275,799 

RBF Kernel   573,094 

(C) Total combinations in fine search 848,893 

(A) + (B) + (C) Total combinations tested 1,456,393 

In coarse search we tested 45,000 combinations of parameter values for the linear 

kernel and 562,500 in the case of the RBF kernel. In the fine search that followed we tested 

275,799 parameter values in the linear and 573,094 combinations for the RBF kernel. The 

total number of parameter setups tested was 1,456,393. The results for the linear and the RBF 

kernel are presented in Table 2 and 3 respectively, below.  

Table 2. Optimal parameters (c and e) and error statistics obtained for each level of monetary 

aggregates for the linear kernel 

Aggregate Best c Best e Test RMSE Test MAPE 

CFS Divisia     

CFS M1 14.61 0.00010 0.0084531* 0.0005040 * 

CFS M2M 209.70 0.00022 0.0097666 0.0006609 

CFS M2 11.80 0.00036 0.0095490 0.0006474 

CFS MZM 69.60 0.00038 0.0095541 0.0006612 

CFS ALL 10.48 0.00001 0.0092773 0.0006312 

MSI Divisia     

MSI M1 14.02 0.00170 0.0085897 * 0.0005470 * 

MSI M2M 147.00 0.00030 0.0101736 0.0007097 

MSI M2 101.80 0.00009 0.0093290 0.0006380 

MSI MZM 250.00 0.00050 0.0092073 0.0006231 

MSI ALL 227.00 0.00030 0.0088829 0.0006266 

Simple Sum     

SS M1  17.28 0.00130 0.0086350 0.0005867 

SS M2M 4.89 0.00410 0.0094765 0.0006339 

SS M2  6.94 0.00150 0.0094031 0.0006220 

1109



Economics Bulletin, 2013, Vol. 33 No. 2 pp. 1101-1115

 

SS MZM 5.42 0.00270 0.0089999 0.0006044 

SS ALL 30.50 0.00230 0.0085843 * 0.0005804 * 

 

Table 3. Optimal parameters (c, g and e) and error statistics obtained for each level of monetary 

aggregates for the RBF kernel 

Aggregate Best c Best g Best e Test RMSE Test MAPE 

CFS Divisia      

CFS M1 129.6 0.02 0.00001 0.010183 0.000666 

CFS M2M 304.0 0.79 0.00001 0.036435 0.003035 

CFS M2 38.0 0.09 0.00001 0.012004 0.000981 

CFS MZM 49.9 0.03 0.00001 0.009502 * 0.000601 * 

CFS ALL 34.0 0.10 0.00001 0.011990 0.000944 

MSI Divisia      

MSI M1 304.7 0.12 0.00001 0.009275 * 0.000695 

MSI M2M 44.0 0.09 0.00001 0.010466 0.000674 * 

MSI M2 305.0 0.34 0.00001 0.013329 0.001046 

MSI MZM 45.0 0.03 0.00001 0.010026 0.000703 

MSI ALL 302.0 5.20 0.00230 0.076714 0.006279 

Simple Sum      

SS M1  302.0 5.20 0.00230 0.040484 0.003715 

SS M2M 302.3 0.20 0.00001 0.010803 * 0.000850 * 

SS M2  297.1 1.78 0.00001 0.054958 0.004883 

SS MZM 303.0 0.24 0.00001 0.016787 0.001639 

SS ALL 303.0 2.21 0.00001 0.043250 0.003781 

 

An asterisk denotes the minimum forecast error observed for each of the three 

monetary aggregates, simple-sum, CFS Divisia and MSI Divisia. In Tables 2 and 3 we report 

both the RMSE and MAPE criteria for out-of-sample forecasting accuracy for the linear and 

RBF kernels respectively. In Table 2, the qualitative results are exactly the same for both 

criteria and thus we continue the analysis with RMSE as it has a direct economic 

interpretation with our data: it represents the average percentage error of real GDP forecasting 

since in our sample all variables are expressed in natural logs. The best forecasts are obtained 

with M1 for the CFS and MSI Divisia aggregates with RMSE values 0.0084531 and 

0.0085897 respectively and for ALL for the simple-sum aggregates with a RMSE of 

0.0085843. Overall, the best accuracy in forecasting next quarter’s real GDP is obtained by 

the CFS M1 Divisia series. With the RBF kernel in Table 3, the best forecasts are with the 

CFS Divisia MZM, the MSI Divisia M1 and the simple-sum M2M aggregates with RMSE 

values of 0.009502, 0.009275 and 0.010803 respectively. Taking all these results into account 

together, we can see that we obtain the best out-of-sample forecasting accuracy of real GDP 

when the CFS Divisia monetary aggregate series is used in M1 level of aggregation. The 

RMSE of the best fit CFS Divisia M1 monetary aggregate implies a forecasting average 

percentage error of 0.84% for the sixteen out-of-sample quarters tested. In all cases the 

Divisia monetary aggregates appear to be superior to the simple-sum ones. 
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These results provide empirical evidence using the SVR methodology in support of 

the Barnett Critique and the relevant theoretical literature that stresses the superiority of the 

Divisia aggregates over the widely used simple-sum ones. 

Figure 6 shows the actual and the predicted GDP values according to the results 

obtained from the linear and the RBF kernel for the best monetary aggregate and the best 

model produced from each kernel. 

 

 

Figure 6: A nonlinear SVR case in the data space. Actual and forecasted values 

based on the best model and best monetary aggregate for each kernel. 

 

4. Robustness 

 In this section we perform a series of robustness tests to our empirical findings of 

Section 3. 

 First, as our full data sample includes the period of the financial crisis, i.e. 2008Q1 to 

2009Q2, we test the robustness of our results when the crisis period is excluded from our data 

sample. By re-running the best selected SVR models
5
 for the CFS Divisia, the MSI Divisia 

and the simple sum monetary aggregates excluding the period of the crisis (2008Q1-2009Q2) 

we conclude that a) for the linear kernel the best forecasts are obtained using the CFS Divisia 

M1 aggregate with an RMSE value of 0.0147 and b) for the RBF kernel the smallest RMSE 

value is 0.0141 for the CFS Divisia MZM. 

 Second, we use a truncated sample spanning the period 1967Q1 to 2007Q4 so that we 

limit our complete sample just before the crisis. We employ only the best selected (in the 

                                                             
5
 Using the set of parameters selected in the best models obtained in Section 3. 
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previous section) levels of aggregation for each one of the CFS, MSI Divisia and simple sum 

aggregates, namely the CFS M1, MSI M2M and SS ALL. We find that for both the linear and 

the RBF kernel the best GDP forecasts are obtained using the MSI Divisia M1 aggregate with 

RMSE values 0.003256 and 0.02763 respectively. 

 Finally, in the effort to control for other variables that may affect our systems, we also 

re-run the best selected SVR models
6
 for the CFS Divisia, the MSI Divisia and the Simple 

Sum monetary aggregates but we now include the 3-month treasury bill (and its four lags) as 

an explanatory variable. The linear kernel provides the most accurate GDP forecasts using the 

MSI M1 aggregate with a 0.01163 RMSE value, while for the RBF kernel the best forecasts 

are obtained using the CFS M1 aggregate with an RMSE value of 0.01150. The robustness 

tests results are summarized in Table 4. 

 

Table 4. RMSE results for 3 robustness tests using the Linear and the RBF 

kernel out of sample  
  Aggregate LINEAR Aggregate RBF 

 

CFS Divisia 

Crisis dates excluded CFS M1 0.014700 CFS MZM 0.0140508 

TB3 included CFS M1 0.014600 CFS MZM 0.0115060* 

1967-2007 dataset CFS M1 0.003549* CFS MZM 0.0494548 

 

MSI Divisia 

Crisis dates excluded MSI M1 0.014902 MSI M1 0.0284028 

TB3 included MSI M1 0.011632 MSI M1 0.0860831 

1967-2007 dataset MSI M1 0.003256* MSI M1 0.0276277* 

 

Simple Sum 

Crisis dates excluded SS ALL 0.015590 SS M2M 0.0750073 

TB3 included SS ALL 0.014406 SS M2M 0.1348513 

1967-2007 dataset SS ALL 0.003372* SS M2M 0.0336841* 

 

We can see that the best results with the linear and the RBF kernel are obtained for all 

the best levels of aggregation when we used the 1967-2007 dataset. Taking into consideration 

all the robustness tests conducted we conclude that the best forecasts were made using the M1 

level of the MSI monetary aggregate with a 0.003256 RMSE value. 

 

5. Conclusion 

 The aim of this study was to compare the out-of-sample forecasting accuracy of the 

widely used simple sum monetary aggregates against two types of the theoretically correct 

Divisia monetary aggregates (CFS Divisia and MSI Divisia) in terms of U.S. output. We 

adopted a machine learning approach employing the Support Vector Regression (SVR) 

technique in order to construct a model with strong generalization ability and accuracy in the 

                                                             
6
 Using the set of parameters selected in the best models obtained in Section 3. 
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training data. In doing so, we also used two alternative kernels, the linear and the RBF. 

According to the forecasting evaluation criteria used, the empirical evidence supports the 

Barnett Critique for the superiority of the Divisia monetary aggregates with respect to the 

simple sum ones. Using the linear kernel the CFS Divisia provide the most accurate out-of-

sample forecasts while with the RBF kernel best accuracy was achieved with the MSI Divisia.  
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