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1 Introduction

The profitability of horizontal mergers has received much attention in the industrial
organization literature. The seminal paper in this line is Salant et al. (1983), who examine
a merger between symmetric firms in a simple Cournot oligopoly. They show a somewhat
unintuitive result that in the absence of cost synergy, a profitable merger requires the
participation of many members in the industry. This is due to a free-riding effect, where
in response to an adjustment in the output of the merged firms, the outsiders can expand
their output. Since then, many researchers have addressed this issue by introducing
relevant models. More recently, Currarini and Marini (2011) discuss the stability of the
grand coalition in a symmetric Cournot game by analyzing the existence of the core
allocation.

However, as mentioned above, most of these previous studies assume a symmetric
market in terms of cost and demand structures. This is clearly due to the analytical
tractability of the models employed. Therefore, very few papers model a merger be-
tween potentially asymmetric firms. One of them is Belleflamme (2000), who explores
coalition-proof Nash equilibrium (CPNE) in a Cournot oligopoly where each player has
an asymmetrically different preference for joining an association. Another work is Zhao
(2013) who examines the stability of the grand coalition in a situation where three firms
have different marginal costs and produce a homogeneous good in a Cournot fashion.
Ebina and Shimizu (2009) also explore stable merger structures in a Cournot market
consisting of four firms with asymmetric substitutability, provided that only a merger
between two firms is allowed.

Following Currarini and Marini (2011) and Zhao (2013), we also analyze the stability
of the grand coalition in a Cournot oligopoly by investigating the core allocation. How-
ever, like Ebina and Shimizu (2009), we allow the substitutability between firms to be
asymmetric. In order to study the monopoly merger in an oligopoly, many papers employ
an approach where a normal form game is firstly converted to a partition function game
(Thrall and Lucas 1963) by finding a quasi-hybrid solution (Zhao 1991), and then an
appropriate core concept is examined. With regard to the latter, we note that although
α-core and β-core are well known (Aumann 1959), some refinements including the two
recent concepts e-core (Yong 2004) and j-belief core (Lekeas 2013) have been developed.
Among them, as in Currarini and Marini (2011) and Zhao (2013), we consider γ-core
and δ-core independently. That is, we focus on the situation where no member has an
incentive to deviate from the grand coalition, provided that: (i) in response to the indi-
vidual/coalitional deviation, the remaining members break up into singletons (γ-stable,
also see Chander and Tulkens 1997, Rajan 1989, Lardon 2012), and (ii) the remaining
members stay together and still cooperate (δ-stable, also see Hart and Kurz 1983, Rajan
1989).

Although we confine our analysis to the case of at most four firms due to analytical
tractability, we make some new findings. The grand coalition is necessarily γ-stable even
in a market with asymmetric substitutability. In contrast, unlike the negative result
for symmetric cases presented by Currarini and Marini (2011) that the grand coalition
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cannot be δ-stable, we show a positive result that the grand coalition becomes stable, as
the market becomes more asymmetric in terms of substitutability.

2 Model

Let N = {1, 2, . . . , n} be the set of firms that produce differentiated goods, where the
output and price of firm i’s product are denoted by qi and pi (i ∈ N), respectively. We
define q = (q1, . . . , qn) and p = (p1, . . . , pn) as vectors of output and price, respectively.
Let A be an n × n matrix with its elements, given as (aij), representing the degree of
substitutability between firms i (i ∈ N) and j (j ∈ N, i ̸= j). With this matrix, our
inverse demand function is given by

p = 1− Aq,

where 1 is an n-dimensional vector with all elements as 1.
In this study, we consider only the cases of n = 3 and n = 4 with the following specific

forms of substitutability matrices.
For n = 3, we consider the following:

A =

 1 θ θ
θ 1 ρ
θ ρ 1

 .

For n = 4, we consider the following three cases:

Case1 : A =


1 θ θ θ
θ 1 ρ ρ
θ ρ 1 ρ
θ ρ ρ 1

 , Case2 : A =


1 ρ θ θ
ρ 1 θ θ
θ θ 1 ρ
θ θ ρ 1

 , Case3 : A =


1 θ θ θ
θ 1 θ θ
θ θ 1 ρ
θ θ ρ 1

 .

We assume that 0 ≤ θ ≤ ρ ≤ 1 for ensuring relational consistency in the degree of
substitutability1. This implies that the market is organized by some groups each consisting
of symmetric firms, where the degree of substitutability between groups is θ whereas that
between firms within a group is ρ. We note that these four are the only possible cases
as such type of asymmetric market structure with three or four firms. Without loss of
generality, we normalize constant marginal costs to be zero. Therefore, the profit of firm
i is given by πi = pi(q1, . . . , qn)qi. Each firm i chooses its output level qi and thus engages
in Cournot competition.

Throughout the paper, we assume that the Cournot equilibrium is obtained as an inte-
rior solution: all outputs are positive in the equilibrium. The feasible range of parameters
(θ, ρ) is further constrained by this assumption.

1For example, if a12 = a13 = 1 for n = 3, that is, if products 1 and 2 and products 2 and 3 are
identical, then a23 = 1.
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We describe the structures of our games. We define coalitional form games Gγ =
{N, vγ} and Gδ = {N, vδ}. The value of coalition for each game is specifically given as
follows.

First, in game Gγ, we assume that for an individual/coalitional deviation, the remain-
ing members are assumed to break up into singletons and maximize their individual profit.
Namely, for any S ⊂ N , vγS is defined as the total profit earned by S in the equilibrium
of the following Cournot game:

max
qi, i∈S

πS =
∑
i∈S

qipi(q1, . . . , qn), and max
qi

πi = qipi(q1, . . . , qn), i ∈ N − S.

In contrast, in game Gδ, we assume that for an individual/coalitional deviation, the
remaining members remain loyal to each other and continue to cooperate. Formally, vδS
is defined as the total profit earned by S in the equilibrium of the following two-person
game between S and N − S:

max
qi, i∈S

πS =
∑
i∈S

qipi(q1, . . . , qn) and max
qi, i∈N−S

πN−S =
∑

i∈N−S

qipi(q1, . . . , qn).

Finally, since we clearly have vγN = vδN , we denote the value of the grand coalition by
vN .

In this study, we investigate the existence of the core as the set satisfying Pareto
efficiency and group rationality. To do this, following Zhao (2001, 2013), we deem that it
suffices to compute the minimum no-blocking payoff MNBP given as

MNBPt =

{
Min

∑
xi

subject to x ∈ Rn
+ ;

∑
i∈S xi ≥ vtS for all S ⊂ N,

where t = γ, δ. It is clear that Core(Gt) ̸= ∅ is equivalent to vN ≥ MNBPt, where
Core(Gt) is the core of game Gt(t = γ, δ). Interchangeably, we refer to a game as t-stable,
if Core(Gt) ̸= ∅.

3 Equilibrium and Analysis

This section is devoted to our results. The detailed proofs of both the propositions
and the derivations of the equations are given in the Appendix.

3.1 Stability in the Case of Three Firms

The values of coalitions can specifically be derived as follows (we omit superscripts for
cases where two firms are merged, since clearly, the values of the coalitions are identical
for both games Gγ and Gδ):

vN = 3+ρ−4θ
4(1+ρ−2θ2)

, vγ1 = (2+ρ−2θ)2

4(2+ρ−θ2)2
, vγ2 = vγ3 = (2−θ)2

4(2+ρ−θ2)2
, v23 =

(2−θ)2(1+ρ)
2(2+2ρ−θ2)2

,

v12 = v13 =
(2−ρ)2(2+ρ−3θ)2+2θ(2−θ)(2−ρ)(2+ρ−3θ)(2−θ−ρ)+(2−θ)2(2−θ−ρ)2

4(4+2ρθ2−ρ2−5θ2)2
,

vδ1 =
(1+ρ−θ)2

(2+2ρ−θ2)2
, vδ3 = vδ2 =

(1−θ)2(2+θ−ρ)2

(4+2ρθ2−ρ2−5θ2)2
.
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For these values of the coalitions, we compute MNBPt(t = ρ, δ) and find the param-
eter region (θ, ρ) that satisfies vN ≥ MNBPt.

We first derive the result for stability in game Gγ.

Proposition 3.1 When n = 3, game Gγ always has the core.

Proof Let d12 ≡ v12 − vγ1 − vγ2 and d23 ≡ v23 − vγ2 − vγ3 , respectively. Then, we can
directly show that depending on these values, MNBPγ is specifically given as in Table
1. Note that for the case of d12 ≥ 0 and d23 ≥ 0, MNBPγ is determined depending on
the relation between vγ1 + v23

2
and v12. Further, note that under our feasible region of

parameters, d12 ≥ 0 and d23 ≤ 0 do not coincide.

Table 1: MNBPγ

d12 ≥ 0 d12 ≤ 0
d23 ≥ 0 vγ1 + v23 or v12 +

v23
2

vγ1 + v23
d23 ≤ 0 – vγ1 + 2vγ2

For all the three cases in Table 1, by direct calculations, we can show that vN −
MNBPγ ≥ 0 necessarily holds. Q.E.D.

Proposition 3.1 shows that γ-stability is guaranteed even in cases where the substi-
tutability among the three firms is asymmetric. In game Gγ, outsiders’ reaction led to the
breaking up of the remaining members into singletons, and consequently, a deviation from
the grand coalition yields intense competition. The proposition proves that this negative
impact always makes any deviation unattractive, regardless of the level of substitutability.

We next analyze the stability in gameGδ. We start the analysis by stating the following
lemma.

Lemma 3.1 When n = 3, Core(Gδ) ̸= ∅ if and only if vN ≥ vδ1 + 2vδ2.

Proof vδ1 + vδ2(= vδ1 + vδ3) ≥ v12(= v13) always holds if ρ ≥ θ. Therefore, since vδ2 = vδ3,
it is sufficient to consider the two cases where MNBPδ are attained as vδ1 + v23 and
vδ1 + 2vδ2, respectively. However, under ρ ≥ θ, we always have vN ≥ vδ1 + v23. Therefore,
the existence of the core is determined by the relation between vN and vδ1 + 2vδ2. Q.E.D.

From Lemma 3.1, we can find the parameter region of θ and ρ where the core is
nonempty. However, instead, we now introduce the mean and variance of aij over i, j =
1, 2, 3, i < j, which indicate the overall degree of substitutability in the market, and
display the region where the core is nonempty in the mean-variance space. Let µ be the
mean and σ2 be the variance. These are explicitly calculated as follows:

µ =
2θ + ρ

3
, σ2 =

2(ρ− θ)2

9
.
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From some algebra, we can verify that the shaded area in Figure 1 is the region where
the core is nonempty. Therefore, we immediately obtain the following proposition:

Figure 1: δ-stable region in Case 1.

Proposition 3.2 When n = 3, the core of game Gδ is nonempty if and only if the average
of the degree of substitutability is low and its variance is high; that is, the market has highly
asymmetric substitutability.

In game Gδ, for the deviation by S, members in N − S are assumed to continue
cooperation. Therefore, the deviation by coalition S is not basically beneficial, because
following the deviation, S faces intense competition with N − S. In contrast, however,
members in N − S are compelled to adjust their output in order to keep higher prices in
response to the deviation by S. This in turn enables S to expand its output, resulting
in the equilibrium output of N − S decreasing. Because of this free-riding effect, firms
are likely to have an incentive to deviate from the grand coalition. In fact, as mentioned
in the Introduction, this effect is so strong that the core is always empty in cases of
symmetric substitutability. However, if θ and ρ are lower and the difference between
them is larger, then firm 1 does not benefit from free riding on the coalition formed by
firms 2 and 3. This is because firm 1 is highly differentiated from the other firms, and in
addition, the output adjustment by firms 2 and 3 after firm 1’s deviation from the grand
coalition becomes minimal as they are less differentiated. Therefore, individual deviation
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by firm 1, and coalitional deviation by firms 2 and 3, are not beneficial. In addition,
for example, coalitional deviation by firms 1 and 2, and individual deviation by firm 2,
are also not beneficial, because firm 2 is less differentiated from firm 3, and thus will
face severe competition from firm 3. Therefore, in such a situation, the grand coalition
becomes stable.

3.2 Stability in the Three Cases of Four Firms

We next show the results for the three cases of four firms. Unfortunately, some of the
analyses are analytically intractable. Therefore, we provide an analytical result only for
Case 1, while numerically showing the results for Cases 2 and 3.

Case 1

In Case 1, we can obtain the following two propositions with regard to γ- and δ-
stability, which are quite similar to those for the case of three firms.

Proposition 3.3 In Case 1, game Gγ always has the core.

Proof Regarding the members who deviate from the grand coalition, we deem that it
suffices to consider the following three cases: (a) The coalition formed by k(1 ≤ k ≤ 3)
firms in N1 = {2, 3, 4} deviates. Let πγ

2,a,k be the individual profit earned by firm 2 (and
by firms 3 and 4) in the equilibrium after the deviation. (b) The coalition formed by
firm 1 and h(1 ≤ h ≤ 2) firms in N1 = {2, 3, 4} deviates. Let πγ

1,b,h and πγ
2,b,h be the

individual profit earned by firm 1 and firm 2 (and firms 3 and 4) in the equilibrium after
the deviation, respectively. (c) Only firm 1 deviates. Let πγ

1,c be firm 1’s profit in the
equilibrium after the deviation.

In contrast, let πN = {πN
1 , πN

2 , πN
3 , πN

4 }(vN =
∑4

i=1 π
N
i ) be the individual profit earned

by each firm under the grand coalition. Then, the profit values can specifically be obtained
as follows:

πN
1 = −2 ρ+3 θ−1

4 (−3 θ2+2 ρ+1)
, πN

2 = πN
3 = πN

4 = 1−θ
4 (−3 θ2+2 ρ+1)

, πγ
1,c =

(2 ρ−3 θ+2)2

(4 ρ−3 θ2+4)2
,

πγ
2,a,1 =

(2−θ)2

(4 ρ−3 θ2+4)2
, πγ

2,a,2 =
(2−θ)2 (2−ρ)2 (ρ+1)

2 (−2 ρ2+θ2 ρ+4 ρ−3 θ2+4)2
, πγ

2,a,3 =
3 (2−θ)2 (2 ρ+1)

(8 ρ−3 θ2+4)2
,

πγ
1,b,1 =

(2−ρ) (ρ−2 θ+1) (−ρ2+θ ρ+ρ+θ3−2 θ2−2 θ+2)
4 (−ρ2+θ2 ρ+ρ−3 θ2+2)2

, πγ
1,b,2 =

(−ρ2+2 θ ρ+2 ρ−5 θ+2) (−ρ2+θ2 ρ+2 ρ+θ3−4 θ2−θ+2)
(−2 ρ2+3 θ2 ρ+4 ρ−9 θ2+4)2

,

πγ
2,b,1 =

(−ρ+θ2−2 θ+2) (−θ ρ2+2 θ2 ρ+θ ρ−ρ−3 θ2+2)
4 (−ρ2+θ2 ρ+ρ−3 θ2+2)2

, πγ
2,b,2 =

(2−θ) (−ρ−θ+2) (−θ ρ2−2 ρ2+5 θ2 ρ+θ ρ+2 ρ−9 θ2+4)
4 (−2 ρ2+3 θ2 ρ+4 ρ−9 θ2+4)2

.

With these values, we can directly show the following relations for each case:
(a) πN

2 ≥ πγ
2,a,1 and πN

2 ≥ πγ
2,a,3 ≥ πγ

2,a,2 hold.
(b) πN

1 ≥ πγ
1,b,1 and πN

1 ≥ πγ
1,b,2 hold. Further, πN

2 ≥ πγ
2,b,1 and πN

2 ≥ πγ
2,b,2 hold.

(c) πN
1 ≥ πγ

1,c holds.
These relations ensure that πN is a core allocation. Q.E.D.
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As in the case of three firms, the grand-coalition is γ-stable, since any deviating
coalition faces intense competition from the remaining singletons. We next investigate
the δ-stability of the grand-coalition. Unfortunately, we immediately have a negative
result as follows.

Proposition 3.4 In Case 1, the core of game Gδ is always empty.

Proof We consider the three relations (a)–(c) obtained in the proof of Proposition 3.3.
Further, we define the profit earned by each member in the equilibrium after the deviation
in the same manner as in the proof of Proposition 3.3, except for replacing the superscript
γ with δ. Then, the profit values are specifically given as follows:

πδ
1,c =

(4 ρ−3 θ+2)2

(8 ρ−3 θ2+4)2
, πδ

2,a,1 =
(θ ρ−2 θ2−θ+2)

2

(−2 ρ2+3 θ2 ρ+4 ρ−9 θ2+4)2
, πδ

2,a,2 =
(1−θ)2 (−ρ+θ+2)2 (ρ+1)

4 (−ρ2+2 ρ−3 θ2+2)2
,

πδ
2,a,3 =

(2−θ)2 (2 ρ+1)

(8 ρ−3 θ2+4)2
, πδ

1,b,1 =
(−ρ2+θ ρ+2 ρ−4 θ+2) (−ρ2−θ2 ρ+θ ρ+2 ρ+θ3−2 θ2−2 θ+2)

4 (−ρ2+2 ρ−3 θ2+2)2
,

πδ
1,b,2 =

(−ρ2+2 θ ρ+2 ρ−5 θ+2) (−ρ2+θ2 ρ+2 ρ+θ3−4 θ2−θ+2)
(−2 ρ2+3 θ2 ρ+4 ρ−9 θ2+4)2

, πδ
2,b,1 =

(−θ ρ+θ2−2 θ+2) (−θ ρ2+θ2 ρ+θ ρ−3 θ2+2)
4 (−ρ2+2 ρ−3 θ2+2)2

,

πδ
2,b,2 =

(2−θ) (−ρ−θ+2) (−θ ρ2−2 ρ2+5 θ2 ρ+θ ρ+2 ρ−9 θ2+4)
4 (−2 ρ2+3 θ2 ρ+4 ρ−9 θ2+4)2

.

With these values, we have πδ
2,a,1 ≥ πδ

2,a,2, π
δ
2,a,1 ≥ πδ

2,a,3, π
δ
2,a,1 ≥ πδ

2,b,1 ≥ πδ
2,b,2, and

πδ
1,c ≥ πδ

1,b,1. This indeed implies that MNBPδ must be MNBPδ = πδ
1,c + 3πδ

2,a,1 or
MNBPδ = πδ

1,b,2 + 3πδ
2,a,1. However, we can directly verify that vN − (πδ

1,c + 3πδ
2,a,1) ≤ 0

and vN − (πδ
1,b,2 + 3πδ

2,a,1) ≤ 0, which completes the proof. Q.E.D.

The intuition behind the result of Proposition 3.4 is that because three firms (firms
2–4) are symmetric in Case 1, an individual deviation by one of them can always enjoy
free-riding as in the case of n = 3 with symmetric firms.

Cases 2 and 3

We now conduct a numerical simulation to examine the existence of the core by com-
puting MNBPt (t = γ, δ) and comparing it with vN under a feasible parameter region of
θ and ρ. We change these parameters from 0 to 1 in steps of 0.01, satisfying θ ≤ ρ and
the condition for ensuring the interior solution. As a result, we first find that the core of
game Gγ is nonempty for all parameter values examined for both cases 2 and 3. We next
show the result with regard to δ-stability. To do this, we compute both the mean and
variance of aij over i = 1, 2, 3, 4, i < j, as in the case of three firms. The mean µ and
variance σ2 for Case 2 are explicitly given as follows:

µ =
2θ + ρ

3
, σ2 =

2(ρ− θ)2

9
.
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For Case 3, these are derived as follows:

µ =
5θ + ρ

6
, σ2 =

5(ρ− θ)2

36
.

The shaded areas in Figures 2 and 3 display the regions in µ− σ2 space where vN ≥
MNBPδ holds for Cases 2 and 3, respectively. Indeed, we can verify that as stated in
Proposition 3.2, as the market becomes more asymmetric with regard to substitutability,
the grand coalition becomes δ-stable. Unlike in Case 1, for both cases, the number of
symmetric firms within a group is at most two, which implies that no firm benefits much
from a deviation and free-riding on the remaining coalition. In particular, the market
structure in Case 2 can mostly avoid this free-riding problem, because it is just split into
two groups each consisting of two firms.

Figure 2: δ-stable region in Case 2 Figure 3: δ-stable region in Case 3
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