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1. Introduction 
 

Inference methods that recognize the clustering of individual observations are now widely used 

in applied econometrics (Wooldridge, 2003). An early, cautionary, example of distorted 

inferences when ignoring the potential correlation between observations sharing the same cluster 

was provided by Pepper (2002). Yet changes in the technology of survey data collection mean 

that use of clustered standard errors may sometimes be inappropriate and cause inference errors. 

Increasingly, household surveys geo-reference ‘exact’ (that is, within 15 meter accuracy) 

locations of respondents, using the Global Positioning System (GPS). This is especially in 

developing countries, where face-to-face surveying predominates so dwellings are easily geo-

referenced when interviewers visit households, and where the falling cost and improved accuracy 

of GPS receivers has most increased demand for location data (Gibson and McKenzie, 2007). 

Moreover, it is in developing countries where spatial clustering of economic outcomes is most 

pronounced because of the importance of environmental heterogeneity to livelihoods. 

In this paper, we question whether the usual inference methods for dealing with clustered 

samples remain the best option when practitioners know exact locations, rather than just that 

groups of observations share the same cluster. We first use a simple spatial error model to show 

the untested restrictions that clustered standard errors place on spatial correlations. We then 

provide an example from a geo-referenced household survey in Indonesia where inferences about 

village-level determinants of income from non-farm rural enterprises (NFRE) are distorted by 

using clustered standard errors. These NFRE are an important escape path from rural poverty and 

are heavily affected by location-specific investments in infrastructure and the quality of the 

business environment (Isgut, 2004).  Hence, correct inferences about drivers of NFRE activity 

can be very useful to economists and policy makers interested in rural poverty. 

 

2. Robust Standard Errors for Clusters and Spatial Correlation 
 

We consider an economic model where the unobservable behavior of neighboring households 

affects own-behavior through social proximity.  Previous examples of such models include 

competitive spatial pricing in real estate (Haining, 1984) and spatially correlated household 

demand due to interdependent preferences (Case, 1991). In both examples, and more generally, 

spatial proximity is used as a proxy for unobservable social proximity. The spread of non-farm 

rural enterprises also likely depends on such proximity, due either to learning from neighbors or 

to the need for coordination when beginning a new activity with uncertain market prospects. 

In general, the unknown spatial correlation patterns in such models are assumed to decay 

with distance. But they also could follow a more clustered pattern, with all close neighbors 

having similar correlations and more distant neighbors having zero correlation. This is the 

pattern assumed by the standard approach to estimating clustered standard errors. To more 

formally illustrate the restrictions on spatial correlations that such clustering entails, we consider 

a simple model with households located along a line (such as a road), equal distance between 

respondents, and first-order spatial correlations ),(   of errors in a simple linear regression, 

jj uXy  10  . To do so, we compare standard errors of the regression slope coefficient 

estimator under the first-order spatial correlation with the corresponding estimator for clustered 

standard errors. The variance estimator that is consistent to spatial correlation is: 
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where j indexes households, cN  is the total number of clusters, m  is the number of observations 

in a cluster, and cN m N  . The first term in ( )V u  is the sum of the covariances within a 

cluster, with intra-cluster spatial correlation, .  The second term involves the inter-cluster 

correlation, ( )  .1   

Cluster corrections make no allowance for spatial correlations between different clusters, 

imposing the untested restriction .0  But in reality, such correlations may not vanish, as 

noted by Elbers et al. (2008). Moreover, since spatial correlations within clusters are often 

unknown, cluster corrections assume the same intra-cluster correlation between any two error 

terms, ( , )jc j ccorr u u    for j j . Yet in practice, survey clusters in rural places can be quite 

unequal in area and may exhibit considerable environmental and economic heterogeneity. Hence 

intra-cluster correlations in errors may vary with cluster size and population density and with the 

strength of omitted common factors, rather than being constant as standard cluster correction 

methods assume. 

Imposing the restrictions that ρ=0 and ( , )jc j ccorr u u    for j j , equation (1) becomes 

the widely used cluster-corrected variance estimator: 
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When the right-hand side of equation (3) is negligible, as with ,0 we expect that 

)ˆ()ˆ( 11  VVc   due to the efficiency gain that comes from using the more precise weighted least 

squares estimator for models with first-order spatial correlations, rather than making the 

assumption that there is the same spatial correlation pattern within every cluster.  

 

3. An Example from Rural Indonesia 
 

To investigate effects of the restrictions imposed by the standard cluster-corrected variance 

estimator, we use clustered data from a geo-referenced household survey in Indonesia to estimate 

an income share equation for net earnings from non-farm rural enterprises. The key features of 

the Rural Investment Climate Survey (RICS) are clustering, with our sample of 1600 rural 

households located in 97 clusters, and geo-referencing of every household by GPS. The survey 

was fielded in only six of Indonesia’s 370 districts (kabupaten) so clusters within each district 

are closer together than for a similarly sized national survey. The survey includes both 

household-level and community-level variables; since community variables are common to all 

households in a cluster, inferences about them may be especially susceptible to misspecification 

of the spatial correlations between errors.  

                                                 
1 Equation (1) is a modified formula for heteroskedasticity and autocorrelation consistent (HAC) standard errors 

(Stock and Watson, 2007, p.606). Although the standard errors of equation (1) are spatial correlation consistent only, 

they can also be considered as heteroskedasticity and spatial correlation consistent standard errors if the error term 

(uj) in the equation is replaced by ))(( jXjj uXv  .  
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As noted above, the phenomena that we study – the share of household income from non-

farm rural enterprises – is potentially affected by both the spatial and social proximity of 

neighbors. Social proximity may matter because of learning effects. Whether the spatial scale of 

learning coincides with the scale of survey clusters is an empirical question. Spatial proximity 

may matter because of local political economy – corruption is often considered a barrier to 

business development in Indonesia – and survey clusters do not always overlap local political 

boundaries. Finally, environmental heterogeneity may affect non-farm enterprises over spatial 

scales that differ from the scale of clustering and with a varying importance across clusters. 

To illustrate the spatial scale of correlations in the income shares we estimate Moran’s I  

yy

Wyy




I       (4) 

where y is a vector of income shares, W is the (row-standardized) spatial weight matrix, with 

wij=0 for non-neighbors and otherwise ijij dw 1  where dij is the distance between observations 

i and j (inverse distance weights). This is equivalent to a regression of the spatially weighted 

average of income shares within a neighborhood on the income share for each household. 

Latitude and longitude coordinates were used to calculate dij for every household, for varying 

neighborhood sizes of 1-40 km. The average distance from each household to the cluster centre 

is only 0.8 km and the largest distance between any two households in a given cluster averages 

1.9 km. Hence this range allows for correlations that extend far beyond the boundary of clusters. 

For all neighborhood sizes considered, Moran’s I is statistically significant, ranging from 0.15 at 

1 km to 0.09 at 20 km and 0.06 at 40 km (Figure 1).  

 

To see if spatial correlations extending beyond cluster boundaries are also apparent in 

OLS residuals, an income share model was estimated with explanatory variables typically used 

in the NFRE literature. These included attributes of the household head (age, gender, religion, 

marital status, education), and the household (size, composition, land ownership, income), and 
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community characteristics. The community variables are of most interest; these are common to 

all households in a cluster so inferences about them may be sensitive to mis-specified spatial 

correlations between errors. Moreover, factors such as village infrastructure and quality of the 

business environment may be more amenable to intervention than are individual characteristics, 

giving policy salience to these community variables. 

 The OLS results suggest that households in larger villages with a business association 

have higher NFRE income shares. In villages further from cooperatives and from the sub-district 

headquarters, experiencing crime or other disputes, households have lower NFRE income shares 

(Table 1, column (1)). But, while the reported standard errors from this OLS model are 

heteroskedasticity-robust, they ignore potential correlations between disturbances (whether in the 

same cluster or not), and so may be misleading. 

 
Table 1: Regression Estimates, With Standard Errors from Robust, Clustered 

and Spatial Error Estimators 

Community Variables OLS, robust 

std errors 

(1) 

Clustered 

std errors 

(2) 

Spatial error 

model 

(3) 

Spatial error 

(ρ=0) 

(4) 

log(# of households in village) 0.102 0.102 0.097 0.101 

 (0.0231)** (0.0442)* (0.0299)** (0.0302)** 

Village has business association 0.103 0.103 0.117 0.112 

 (0.0299)** (0.0636) (0.0391)** (0.0385)** 

Village had crime/dispute last year -0.080 -0.080 -0.078 -0.080 

 (0.0224)** (0.0314)* (0.0299)** (0.0301)** 

Village has a cooperative 0.040 0.040 0.039 0.042 

 (0.0245) (0.0374) (0.0328) (0.0323) 

Distance to cooperative (km) -0.490 -0.490 -0.451 -0.466 

 (0.1788)** (0.2344)* (0.2464)+ (0.2415)+ 

Distance to sub-district (km) -1.284 -1.284 -1.314 -1.342 

 (0.6688)+ (0.9727) (0.9062) (0.8947) 

Low blackouts (< 30 minutes/day) -0.051 -0.051 -0.054 -0.053 

 (0.0282)+ (0.0481) (0.0372) (0.0366) 

Village has no telephones 0.057 0.057 0.056 0.059 

 (0.0404) (0.0633) (0.0544) (0.0532) 

Village has unsealed roads 0.041 0.041 0.044 0.045 

 (0.0293) (0.0446) (0.0386) (0.0388) 

Phi (spatial autoregressive parameter)   0.285 0.271 

   (0.046)** (0.0384)** 

R-squared 0.16 0.16   

Log-likelihood function -566.32 -566.32 -541.34 -541.68 

Notes: Standard errors in ( ). The standard errors for OLS in column (1) are heteroskedasticity-robust but 

otherwise ignore clustering and spatial locations. **=p<0.01, *=p<0.05, +=p<0.10. Characteristics of the 

household head (age, gender, religion, marital status, education) and the household (size, composition, land 

ownership, income) also included.  

 

In fact when Moran’s I is estimated for these OLS residuals, there is always a statistically 

significant (p<0.01) spatial correlation, for neighborhoods extending from 1 km to 40 km.2 In 

                                                 
2 The evidence of statistically significant spatial autocorrelation in the OLS residuals is also apparent from Lagrange 

Multiplier tests, for all neighborhood sizes considered. Results of these tests are available from the authors. 
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other words, the spatial correlation in the dependent variable that is shown in Figure 1 is not 

removed by the covariates, making the inferences from the OLS results potentially misleading, 

even with heteroskedasticity-robust standard errors. Moreover, the spatial scale considered with 

Moran’s I extends well beyond cluster boundaries, implying that the restriction imposed by the 

usual correction for clustering, of ,0 also does not hold. 

 When the clustered standard errors are calculated (Table 1, column 2) they exceed the 

heteroskedasticity-robust standard errors, by 47 percent on average. Moreover, three community 

variables (having a business association, distance to sub-district headquarters and blackouts) that 

appeared statistically significant when using the robust standard errors now appear statistically 

insignificant.  

The results in column (1) and (2) of Table 1 ignored the GPS information on exact 

locations. To exploit this extra information we estimate a spatial error model: 







Wuu

uXY
      (5) 

where φ is the spatial autoregressive coefficient, ε a vector of iid errors and everything else is as 

defined above. In this model, the error for one observation depends on a weighted average of the 

errors for neighboring observations (irrespective of whether in the same cluster or not). After 

experimenting with neighborhoods of different sizes, a 10 km neighborhood was found to 

maximize the log-likelihood and resulted in a spatial autoregressive estimate of φ=0.29 (Table 1, 

column (3)). In other words, the spatially weighted average residual income share within a 10 km 

radius is significantly associated with the residual income share for a particular household even 

after controlling for household characteristics and a set of location attributes.  

When the spatial error model is used, standard errors are smaller than when the cluster-

corrected variance estimator is used for the OLS regression coefficients, for all covariates but 

one (distance to the cooperative, where standard errors are higher by five percent with the spatial 

error model). On average, over all the covariates in Table 1, standard errors are 21 percent 

smaller with the spatial error model than with the clustered errors. Moreover, one of the 

indicators of the quality of the local business environment, whether there is a village business 

association, appears to have a strongly significant (p<0.01) effect on income from non-farm rural 

enterprises when standard errors are either heteroskedasticity-robust or from the spatial error 

model but when the cluster correction was used, the standard error on the business association 

indicator was almost twice as large and it appeared as a statistically insignificant determinant of 

NFRE income shares.  

The standard cluster correction imposes two restrictions; that inter-cluster correlations 

vanish (ρ=0), and that intra-cluster correlations are the same everywhere irrespective of cluster 

area, density of observations and importance of shared unobservable factors for neighbors. To 

see which of these two restrictions is more important to the smaller standard errors and changed 

inferences when moving from the cluster correction to the spatial error model, we estimate a 

spatial error model where all weights are set to zero for pairs of observations not in the same 

cluster.  

The results in the last column of Table 1 that rely on the restriction that ρ=0 are almost 

identical to the results in column (3) where no restrictions were placed on the spatial error model. 

This comparison suggests that most of the overstatement of standard errors when using the 

standard cluster correction comes from assuming the wrong form of spatial correlation within 

clusters, rather than from the implicit assumption that inter-cluster correlations vanish. In other 

words, it appears that intra-cluster correlations are not the same everywhere, and that instead 
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they may vary with factors such as the size of clusters, the density of observations and the 

importance of proximity for sharing unobservable factors between neighbors.  

 

4. Conclusions 
 

The widely used cluster-corrected variance estimator imposes untested restrictions on the pattern 

of spatial correlations. In our example, the resulting clustered standard errors are too 

conservative, compared with those coming from a spatial error model that uses exact locations of 

observations. On average, standard errors were smaller by one-fifth when the spatial error model 

that utilizes the location-specific coordinates was used. The larger standard errors when the 

cluster correction is applied would also cause an inference error, with one of the covariates that 

is most amenable to being changed by policy interventions (having a village business 

association) appearing to be statistically insignificant in the cluster-corrected results, but highly 

significant when all of the other variance estimators were used. 

The main source of overstatement in the clustered standard errors was from assuming the 

wrong form of spatial correlation within clusters, rather than from the implicit assumption that 

inter-cluster correlations vanish. These results suggest that more robust inferences are likely to 

come from knowing actual distance between observations, supporting the growing use of GPS in 

household surveys to identify neighbors, rather than just accounting for the fact that groups of 

observations share the same cluster. 
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