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1. Introduction 

The Bayesian Information Criterion (Raftery (1986a, 1986b, 1995)), or BIC, is widely used for 

Bayesian hypothesis testing because it offers a large sample approximation to the Bayes factor 

that is easily computed and that does not require an explicit statement of a prior. It may be useful 

to turn the problem around and ask what prior is implied by the BIC within an easy to interpret 

class.
1
 Specifically, consider the problem of a point null hypothesis for a coefficient that is 

approximately normally distributed, a linear regression coefficient in a large sample being a 

common example. Ask then how wide a uniform interval around the null is implied as a prior by 

the BIC. It turns out that that the width of the interval is well-approximated by √    times the 

standard error of the regression coefficient. 

The Bayes factor, which is the posterior odds ratio assuming equal prior probabilities for the 

null and the alternative, is the ratio of the marginal likelihoods of the models being compared. 

The usual Bayesian procedure maps a likelihood function and a prior density into the marginal 

likelihood. Here we reverse the mapping. Given a value of the BIC and a likelihood, we compute 

a prior density. The implied prior from reversing the mapping is not unique; there are many prior 

specifications for the alternative which yield the same value for the marginal likelihood. Any 

prior for which the exact Bayes factor gives the same result as the BIC approximation is equally 

valid as an implicit prior. The implicit uniform prior may be particularly easy to interpret.
2
 

Suppose the point null is        , then using Bayes theorem  (  | ̂)   ( ̂|  )  

         ̂ , where  ̂ is the estimated coefficient. Suppose the alternative is         and we 

want to find a prior under the alternative of an interval of width   spread evenly around the null, 
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estimated coefficient  ̂        , define the Studentized coefficient     ̂       , and let 

     and      stand for the standard normal pdf and cdf respectively. Then (as shown in the 

Supplemental Material) the log Bayes factor favoring the null is 
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Kass and Raftery (1995) give the BIC for   data points for this situation as 

                                                      

1
 Weakliem (1999) raises objections to the BIC on the grounds that the implicit prior may not be close to a prior that 

an investigator would choose.  In a response to Weakliem, Raftery (1999) argues that the BIC “is sufficiently 

conservative, perhaps too conservative.” Berger and Pericchi (2001) compare other objective Bayes factor methods 

to the BIC. For a comparison of model selection using the BIC and other criteria see Dey et. al. (2008). 
2
 Raftery (1999) offers the unit information prior (UIP) as an implicit prior for the BIC, writing “roughly speaking, 

the prior distribution contains the same amount of information as would, on average, a single observation.” Using 

the notation in the next paragraph, UIP for this problem would be  ( ̂ 
  

 
). Note that the UIP is centered around the 

estimated coefficient rather than the null. 
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             (2) 

Note that for both the Bayes factor and the BIC the data enters only through the statistic  . 

Since the BIC approximates twice the log Bayes factor, equating two times equation (1) with 

equation (2) lets one solve for the value of   implicit in the BIC. The equation simplifies a little 

since          
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Equation (3) defines the width of the implicit BIC prior relative to the standard deviation of 

the estimated coefficient as a function of   and  . The values of     solving equation (3) are 

plotted in Figure 1 for a range of values of   and   [   ].3 (For   [   ] the values of   ⁄  are 

identical to the eye, so only one curve is apparent.) 

Figure 1 illustrates two points. First, it is often said that the BIC is conservative. This is seen 

to be true in the sense that with only 60 observations the implied prior covers almost 10 standard 

deviations on either side of   .
4
 Second, for large values of    ,  (
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)    so 

  ⁄  √   . In fact even for      the approximation is essentially perfect. 

 

                                                      

3
 Note that the Bayes factor favoring the null, equation (1), is not necessarily monotonic in     and when regarded 

as a function of the width of the prior has a minimum value in favor of the null (for a given  ). Equivalently, in what 

may be a curiosum, the uniform prior implies a maximum value of the Bayes factor in favor of the alternative. This 

means that for very large values of   relative to   there may not be a solution to equation (3), or there may be two 

solutions. However, for large   relative to   there is always a single solution, as presented in Figure 1 
4
 Another way to see that the BIC is conservative is to note that for the UIP, the standard deviation of the prior is √  

times as wide as the standard deviation of  ̂  
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Figure 1: Implicit width of uniform prior for BIC,   [   ] 

 

Finally, for many estimators the standard deviation of the estimate is inversely proportional 

to the square root of the number of observations so the implicit BIC prior is constant for more 

than a modest number of observations. For the sample mean as the canonical example, if 

        and                  
   so      

   , then   √    
 . 

2. An Example 

 
Economists are interested in whether the stock market is “weak form efficient,” meaning whether 

the market return can be predicted by lagged returns. Economists expect the coefficient on 

lagged returns to be close to zero—zero being the value under weak form efficiency—for two 

different reasons. First, a large coefficient suggests the existence of profit opportunities that one 

would expect to be competed away in a well-functioning market. Second, economic theory 

suggests rates of return should be relatively stable. At the very least rates of return should not be 

explosive, so the coefficient on lagged returns should be less than 1.0 in absolute value. Table 1 

shows the results of regressing the S&P 500 return on the lagged return for both monthly and 

daily data.
5
 The frequentist results “weakly reject” market efficiency with the monthly data and 

strongly reject using the daily data. In contrast, the Bayes factors computed from the BIC are 

                                                      

5
 The underlying data is the series SP500 from the St. Louis Federal Reserve Economic Database (FRED). The daily 

return is                          . The monthly return uses SP500 on the last day of each month. 
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much more conservative about rejecting the market efficiency. The Bayes factor from the 

monthly data provides positive support for market efficiency while the Bayes factor from the 

daily data indicates a toss-up. As a substantive point the  [          ] implicit priors for the 

BIC are overly conservative, as they include coefficients outside the [    ] stationary interval 

which are not credible. Thus one benefit of computing implicit BIC priors is as an aid in deciding 

in a particular instance whether more explicit prior information should be brought to bear. 

Table 1: BIC and implicit prior for S&P 500 returns regression 

Data S&P 500 returns, monthly 
1957M03 2012M08 

S&P 500 returns, daily 
1/04/1957 8/30/2012 

observations 666 14,014 

Coefficient on lagged return 

(t-statistic) 

[standard error] 

p-value 

0.067 

(1.74) 

[0.039] 

<0.082> 

0.026 

(3.09) 

[0.008] 

<0.002> 

Bayes factor from BIC 5.67 1.00 

  2.50 2.51 
 

          ⁄  64.7 296.7 

 

3. Summary 

 

Since computation of the BIC does not account for the prior, any number of implicit priors are 

consistent with the BIC. However, backing out the uniform prior implied for a single normally 

distributed estimator is straightforward and may shed light on whether use of the BIC is 

consistent with what might be an investigator’s true priors. 
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