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1 Introduction

The last couple of decades has witnessed substantial theoretical developments in the mea-
surement of different polarization concepts. One such concept is that of bipolarization
which was motivated, inter alia, by concerns over the disappearance of the middle class in
developed countries. The seminal contribution for the measurement of bipolarization was
an early version of Foster and Wolfson (2010), which introduced the first and second-order
bipolarization curves. As Foster and Wolfson (2010) explain, bipolarization captures the
degree to which societies may develop bimodal distributions above and below the median.
Any progressive transfer that brings two people on different sides of the median closer to-
gether is deemed to reduce bipolarization; whereas any progressive transfer that brings
two people on the same side of the median closer together is meant to increase bipolariza-
tion. Further significant contributions based on these two aspects of bipolarization were
provided by Wang and Tsui (2000), Esteban, Gradin, and Ray (2007), Deutsch, Silber,
and Hanoka (2007), Bossert and Schworm (2008), Chakravarty (2009), Lasso de la Vega,
Urrutia, and Diez (2010), and Chakravarty and D’Ambrosio (2010).

Now, as Chakravarty (2009) explained, the plethora of bipolarization indices fulfilling
desirable properties does not have to produce consistent rankings of distributions nor-
mally. Hence Chakravarty (2009) proved that bipolarization indices fulfilling the key ax-
ioms rank distributions consistently if and only if the relative bipolarization curves do not
cross. That is, he provided the bipolarization-equivalent of the Lorenz consistency condi-
tions.

This paper proposes an alternative relative bipolarization quasi-ordering, based on rel-
ative bipolarization (RB) Lorenz curves. For any given percentile, a traditional Lorenz
curve is constructed by adding quantiles from the lowest to the highest, up to the given
percentile’s quantile, and dividing that total by the sum of all values (or, equivalently,
dividing the incomplete mean up to that given percentile by the complete mean). By con-
trast, the RB Lorenz curve requires first splitting the ordered population into two halves
separated by the median. Then a "half-percentile" set running from 0 to 0.5 is established
(where 0 corresponds to the median itself). The next step is to relate every pair of quantiles
equally ranked away from the median, i.e. one above and one below the median, to one
single half-percentile. For instance the lowest value is paired with the highest value and
they both constitute quantiles corresponding together to the 0.5 half-percentile. Finally,
for any given half-percentile (running from 0 to 0.5), the RB Lorenz curve is constructed
by adding the differences between each pair of quantiles, from the lowest to the highest
difference, up to the given half-percentile, and dividing the total by the sum of all values
(or, equivalently, dividing an incomplete mean quantile difference by the mean).

The note shows that the quasi-ordering produced by the RB Lorenz curves is identi-
cal to that of the relative bipolarization curves, and it also illustrates the appeal of the
RB Lorenz curves in representing relative bipolarization situations including minimum
and maximum bipolarization, as well as any intermediate situation of perfect bimodality.
Moreover, unlike other bipolarization curves, RB Lorenz curves do not involve the median
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for their derivation (except, of course, to split the populations into two halves).
The rest of the note proceeds as follows. The next section provides the notation and a re-

capitulation of desirable properties for a bipolarization index. Special attention is given to
normalization properties. Then the RB Lorenz curves are introduced and some bipolariza-
tion situations are illustrated with it. Thereafter the relative bipolarization quasi-ordering
is shown to be necessary and sufficient for the consistency of relative bipolarization indices
satisfying different sets of key desirable properties. The note ends with some concluding
remarks, followed by the Appendix on BGG curves.

2 Preliminaries

2.1 Notation

Let y be a non-negative continuous variable from distribution Y , with quantile function:
y(p) ∶ [0,1] ∈ R+ → R+. The population is divided into two halves: The bottom 50%, with
y ⩽ m, where m is the median, and the top 50%, with y ⩾ m. Then quantile functions can
be defined for each half:

yL(p) ≡ y(0.5 − p) p ∈ [0,0.5] (1)

yH(p) ≡ y(0.5 + p) p ∈ [0,0.5] (2)

For instance: yL(0) = yH(0) = m; yL(0.5) = min y; and yH(0.5) = max y. Finally, µ is the
mean of the whole distribution.

For the description of the properties below, it also helps to define the following sets: NU

is the set of people above the median and NL is the set of people below the median. The
population has N individuals.

2.2 Desirable properties for a bipolarization index

The following definitions are helpful for the later introduction of desirable properties for a
relative bipolarization index:

Definition 1. Spread-decreasing Pigou-Dalton transfer (SDPD transfer): Distribution X

is obtained from Y by an SDPD transfer if there is a pair of individuals (i, j), such that
i ∈ NU ∧ j ∈ NL, xi = yi − δ, xj = yj + δ, for δ > 0, xi ⩾m ⩾ xj and xk = yk∀k ≠ (i, j).

Definition 2. Clustering-increasing Pigou-Dalton transfer (CIPD transfer): Distribution
X is obtained from Y by an CIPD transfer if there is a pair of individuals (i, j), such that
i, j ∈ NU ∨ i, j ∈ NL, yi > yj , xi = yi − δ, xj = yj + δ, for δ > 0, xi ⩾ xj and xk = yk∀k ≠ (i, j).

Definition 3. Minimum bipolarization (MIN): Distribution Y exhibits minimum bipolar-
ization if and only if: yi =m∀i ∈ N .

Definition 4. Maximum bipolarization (MAX): Distribution Y exhibits maximum bipolar-
ization if and only if: yi = 0∀i ∈ NL ∧ yj = 2m∀j ∈ NU .
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While MIN is universally accepted as the benchmark of minimum bipolarization in the
bipolarization literature , MAX does not carry consensus (e.g. note that the corresponding
normalization axiom in Chakravarty (2009, p. 108) only relates to MIN). For instance,
some of the bipolarization indices that can be derived from one of the families of Wang and
Tsui (2000) do not exhibit a maximum at all. By contrast, the classic index by Foster and
Wolfson (2010) reaches its maximum value of 1 if and only if MAX is present.1 Having a
maximum value that is well defined and easy to interpret can be advantageous in terms of
comparability across distributions, but it comes at the cost of being unable to differentiate
among all the different distributions characterized by the maximum definition (e.g. MAX
in the case of bipolarization). Moreover, in the case of relative bipolarization measure-
ment, MAX seems to be the only reasonable maximum benchmark since, once attained,
bipolarization cannot be further increased either by progressive transfers on one side of
the mean or by regressive transfers across the mean (e.g. reversing the SDPD). This situ-
ation occurs as long as everybody in the bottom half has zero income and everybody in the
top half has the same positive income whichever its value. 2

Now a bipolarization index, I(X) ∶ RN
+
→ R+, is a continuous function that maps from

an N-dimensional vector of real, non-negative numbers to the non-negative segment of
the real line. Some bipolarization indices, e.g. FW , actually map onto the real interval
[0,1]. The desirable properties for a bipolarization index are listed below. The first two
properties are widely used in the bipolarization literature.

Axiom 1. SYM (Symmetry): If X is obtained from Y by multiplying the latter with a
permutation matrix3 then I(X) = I(Y ).

Axiom 2. POP (Population replication): If X is obtained from Y by replicating the latter’s
population by a constant factor of λ ∈ N++, then I(X) = I(Y ).

Axiom 3. SC (Scale invariance): If X ∶= (x1, x2, ..., xN) and Y ∶= (kx1, kx2, ..., kxN) where
k ∈ R++, then I(X) = I(Y ).

Relative bipolarization indices usually satisfy scale invariance (e.g. FW , the index of
Deutsch et al. (2007), or the PN4 of Wang and Tsui (2000)). However others have explored
constructing bipolarization indices satisfying a less stringent property of unit consistency
(e.g. Lasso de la Vega et al. (2010)) whereby only the ordinal comparisons, but not the
indices’ values, are unaffected by changes in the variable’s unit of measurement. A third
alternative is a property of translation invariance, which states that: if X ∶= (x1, x2, ..., xN)
and Y ∶= (x1 + k, x2 + k, ..., xN + k) where k ∈ R, then I(X) = I(Y ). The index PN3 of Wang
and Tsui (2000) is translation invariant.

1They propose the following index: FW = (GB − GW )
µ
m

where GB and GW are the between-group and
within-group Gini indices, respectively. The two groups are top and bottom halves of the distribution.

2Interestingly, the alternatives of indices with, or without, a maximum value also exist in the inequality
literature. For instance, the Gini coefficient takes its maximum value of 1 − 1/N if and only if y = 0 for
everybody except for one single person for whom y > 0, irrespective of how wealthy this person is. By contrast,
the mean log deviation, for instance, does not have a maximum value.

3The permutation matrix is a square N-dimensional matrix with entries of 0 and 1 such that all rows and
columns add up to one.
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The next two axioms restate the expected effects of SDPD and CIPD transfers on a
bipolarization index:

Axiom 4. SPREAD: If X is obtained from Y by an SDPD transfer, then I(X) < I(Y ).

Axiom 5. CLU: If X is obtained from Y by a CIPD transfer, then I(X) > I(Y ).

Finally, two normalization axioms can be considered. Weak normalization (WNORM)
states that the bipolarization index should attain its minimum if and only if X is char-
acterized by MIN, whereas strong normalization (SNORM) states that the bipolarization
index should attain its minimum and maximum values if and only if X is characterized by
MIN and MAX, respectively:

Axiom 6. WNORM (Weak Normalization): I(X) = 0 if and only if X exhibits minimum
bipolarization.

Axiom 7. SNORM (Strong Normalization): a) I(X) = 0 if and only if X exhibits minimum
bipolarization; and b) I(X) = 1 if and only if X exhibits maximum bipolarization.

3 The relative bipolarization (RB) Lorenz curve

The RB Lorenz curve is a function, ψ(p) mapping from the continuous interval [0,0.5]
(corresponding to the half-percentiles) to continuous interval [0,1]. The construction of
the curve requires considering the differences yH(p) − yL(p) for every value of p in the
[0,0.5] interval, i.e. the differences between pairs of y values, one above and one below the
median, both equally ranked away from the median. Then the function is the following:

ψ(p) = ∫
p
0 [yH(q) − yL(q)]dq

µ
; p ∈ [0,0.5] (3)

The RB Lorenz curve is characterized by the following properties, many of which are
informative of particular features of bipolarization and inequality in the distribution:

Property 1. Normalization: 0 ⩽ ψ(p) ⩽ 1. In particular ψ(0) = 0.

The maximum value of 1 is obtained for p = 0.5 if and only if MAX holds.

Property 2. Minimum bipolarization: ψ(p) = 0 ∀p if and only if y =m∀y.

That is, the curve is flat and overlaps with the horizontal axis if and only if all incomes
are equal to the median.

Property 3. Weak convexity: ψ′(p) ⩾ 0 and ψ′′(p) ⩾ 0.

The RB Lorenz curve is weakly convex just like a Lorenz curve. This is the case because
the slope of the curve has the form: ψ′(p) = yH(p)−yL(p)

µ , which is non-negative since yH(p) ⩾
yL(p). Moreover, ψ′′(p) = 1

µ[
∂yH(p)
∂p − ∂yL(p)

∂p ] ⩾ 0 because ∂yH(p)
∂p ⩾ 0 and ∂yL(p)

∂p ⩽ 0.

Property 4. Perfect bimodality: For any given pair of real non-negative numbers a and b

such that b > a, ψ(p) = 2 b−aa+bp if and only if yL(p) = a∀p ∈ [0,0.5] and yH(p) = b∀p ∈ [0,0.5].
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The RB Lorenz curve is a straight line if and only if the distribution is perfectly bi-
modal. With perfect bimodality: ∂yH(p)

∂p = 0 and ∂yL(p)
∂p = 0.

Property 5. Maximum bipolarization: ψ(p) = 2p if and only if yL(p) = 0∀p ∈ [0,0.5] and
yH(p) = b∀p ∈ [0,0.5].

The RB Lorenz curve is a straight line with the highest possible slope if and only if
MAX holds.

Property 6. Between-group Gini: The between-group Gini, where the two non-overlapping
groups are the bottom and the top halves divided by the median, is equal to 1

4ψ(0.5).
4

The intersection of the RB Lorenz curve with the right vertical axis (which intersects
the horizontal axis at the value of 0.5) which is proportional to the between-group Gini
index, provides a measure of the spread between the bottom and the top half of the distri-
bution, in terms of the normalized difference of group means.

3.1 Graphical illustration

Figure 1 illustrates different situations of bipolarization using the RB Lorenz curves. MIN
is represented by the dashed dark-blue line drawn just above the horizontal axis, but really
overlapping with it. MIN also coincides with a situation of perfect equality. On the other
extreme, MAX is represented by the dashed yellow-orange straight line running from the
origin to the top right corner. Any other situation of perfect bimodality, aside from MAX,
is represented by the dashed green straight line. Finally, a more common intermediate
situation, away from both MIN and MAX, but also from perfect bimodality, is depicted by
the dashed red convex curve.

4The definition of between-group Gini for two non-overlapping groups is based on Lambert and Aronson
(1993).
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Figure 1: Relative bipolarization quasi-orderings based on RB Lorenz curves: an illustra-
tion

3.2 Relative bipolarization quasi-ordering based on RB Lorenz curves

The following theorem states that all relative bipolarization indices satisfying, symmetry,
population replication, scale invariance, spread-decreasing Pigou-Dalton transfers, and
clustering-increasing Pigou-Dalton transfers, if and only if the RB Lorenz curves do not
cross:

Theorem 1. ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p), if and only if distribution A exhibits
more relative bipolarization than distribution B according to any relative bipolarization
index satisfying SYM, POP, SC, SPREAD and CLU.

Proof. 5 Showing that ψ(p) fulfills SYM, POP and SC (and therefore is consistent with
indices satisfying those properties) is straightforward. The purpose of the proof is to show,
first, that ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p) is necessary for I(A) > I(B), for any
I satisfying SPREAD and CLU. This is done by showing that if the RB Lorenz curves
cross then one can always find a pair of relative bipolarization indices ranking A and B

inconsistently, notwithstanding their fulfillment of SPREAD and CLU.
The next step is to show that the RB Lorenz curve condition is sufficient to imply the

index-consistency condition: I(A) > I(B), for any I satisfying SPREAD and CLU. The idea
is to show that, given ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p), we can always derive A from
B (or viceversa), through an adequate sequence of CIPD and/or SDPD transfers. Since

5I would like to thank an anonymous referee for useful advice for the proof of Theorem 1.
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the indices react to these transfers in pre-specified ways then the lack of RB Lorenz curve
crossing suffices to guarantee ordering consistency across relative bipolarization indices
satisfying SPREAD and CLU.

NECESSITY:
Imagine that the two RB Lorenz curves cross, that is: ∃q∣ψA(q) < ψB(q) and ∃p∣ψA(p) >

ψB(p). Then, if we can find a pair of indices, I1 and I2, such that I1(A) > I1(B) but I2(A) <
I2(B), we prove that the lack of curve crossing is necessary for different indices to rank
consistently. Consider the following two distributions: A ∶= (10,20,30,40,50,60,70,80,90,100)
and B ∶= (10,28,30,32,50,60,70,70,90,110). Their RB Lorenz curves cross. Now we con-
sider two admissible indices from the family PN2 ≡ 1

m ∑
N
i=1 aiyi of Wang and Tsui (2000, p.

356). Our index I1 uses the following vector of ai coefficients (for the incomes ranked in
ascending order): (−1,−5,−8,−10,−11,11,10,8,5,1); and I2 uses the following coefficients:
(−1,−2,−4,−7,−11,11,7,4,2,1). It is then straightforward to note that: I1(A) > I1(B) but
I2(A) < I2(B). Hence, the fulfillment of the RB Lorenz curve condition is necessary for the
fulfillment of the index-consistency condition.

SUFFICIENCY:
Let ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p). We need to prove that, in such ab-

sence of curve-crossing, distribution A can be obtained from B through a series of CIPD
and/or SDPD transfers.6 Firstly, since A and B may have different means (µ(A) and
µ(B), respectively), then we need to generate an auxiliary distribution, C, such that:
yCi = yBi

µ(A)
µ(B) . Since ψ(p) fulfills SC, then ψC(p) = ψB(p) ∀p, therefore: ψA(p) ⩾ ψC(p)

∀p and ∃p∣ψA(p) > ψC(p). Then the next step is to show that A can be obtained from C

through the above transfers.
A necessary preliminary for the rest of the proof is Muirhead’s theorem (Marshall,

Olkin, and Arnold, 2011, p. 7-8). Let X and Z be the distributions of two non-negative,
real-valued variables x and z, respectively. The population size of both distributions is n.
The theorem, in its discrete form, says that: ∑ki=1 xi ⩾ ∑ki=1 zi ∀k ∈ [1, n] ⊂ N++ and ∑ni=1 xi =
∑ni=1 zi, with both x and y added from the lowest to the highest value, if and only if X can
be obtained from Z through a sequence of rank-preserving progressive transfers.

Now, if ψA(p) ⩾ ψC(p) ∀p and ∃p∣ψA(p) > ψC(p), then either: ψA(0.5) = ψC(0.5) or
ψA(0.5) > ψC(0.5). If ψA(0.5) = ψC(0.5) then we can apply Muirhead’s theorem, in its
continuous-variable form, by defining quantile-gap variables for each distribution, e.g.
gA(p) ≡ yAH(p) − yAL (p); and realizing that RB Lorenz curves accumulate these gaps ranked
in ascending order. Then, given the relationship between ψA(p) and ψC(p), the theorem
allows us to conclude that the distribution of gaps in A can be obtained from the distribu-
tion of gaps in C through sequences of rank-preserving progressive transfers. This means
transfers in which some δ > 0 amount is transferred from g(r) to g(q), such that q < r.
It turns out that only two types of transfers between incomes (or a combination thereof)
would produce the require transfers between gaps: i) A CIPD transfer from yH(r) to yH(q);
ii) A CIPD transfer from yL(q) to yL(r). Therefore, since A can be obtained from C through
a sequence of CIPD transfers, and C is obtained through a multiplicative rescaling of B, it

6Reverse SDPD transfers in our example, i.e. spread-increasing, regressive transfers across the median.
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must be the case that: I(A) > I(C) = I(B), for all relative bipolarization indices satisfying
SC and CLU.

But what if ψA(0.5) > ψC(0.5)? In this case Muirhead’s theorem does not apply di-
rectly. However if we can derive a distribution D from C, such that: ψA(p) ⩾ ψD(p) ∀p,
∃p∣ψA(p) > ψD(p) and ψA(0.5) = ψD(0.5), then we can apply the theorem to the com-
parison between A and D. It turns out that we can derive D from C through a se-
quence of reverse SDPD transfers, i.e. spread-increasing, Pigou-Dalton transfers across
the median. The natural starting point is to set gD(p) = gC(p) ∀p < 0.5 and render
gD(0.5) = gC(0.5) + δ (with δ > 0) through a reverse SDPD transfer from yCL (0.5) to yCH(0.5)
until ψA(0.5) = ψD(0.5). If δ is not enough (e.g. because yDL (0.5) is now 0 and it is still
not the case that ψA(0.5) = ψD(0.5)), then an additional reverse SDPD transfer is imple-
mented with the gap of C immediately below p = 0.5, and so on, until ψA(0.5) = ψD(0.5).
This sequence of reverse SDPD transfers ensures both that ψA(0.5) = ψD(0.5) and that
ψD is never above ψA. Then we apply Muirhead’s theorem and conclude that A can be
obtained from D through a sequence of CIPD transfers. To summarize, C is obtained from
B through multiplicative rescaling, D is obtained from C through spread-increasing, re-
gressive transfers (i.e. reverse SDPD transfers across the median), and A is obtained from
D through CIPD transfers (each on one side of the median).

Hence, whenever ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p), we can always obtain A from
B through a sequence of CIPD transfers, reverse SDPD transfers, and/or multiplicative
rescaling transformations. Since relative bipolarization indices increase with these trans-
fers (and fulfill SC) it must be the case that: ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p)
suffices to imply that I(A) > I(B) for all indices satisfying SPREAD, CLU and SC.

In conclusion, whenever it is the case that ψA(p) ⩾ ψB(p) ∀p and ∃p∣ψA(p) > ψB(p), we
can always obtain A from B through a sequence of CIPD and/or reverse SDPD transfers,
all of which lead to I(A) > I(B), for any I satisfying SPREAD and CLU. ∎

Applying theorem 1 to the hypothetical distributions depicted in figure 1, it is clear that
any pairwise comparison among them is robust since the curves do not cross. Moreover,
using the colours to identify the distributions, the quasi-ordering in terms of increasing
bipolarization becomes: dark-blue, red, green, and yellow-orange. All relative bipolariza-
tion indices satisfying the key properties mentioned above rank those four distributions
consistently.

4 Conclusion

This paper introduced a relative bipolarization quasi-ordering based on relative bipolar-
ization (RB) Lorenz curves. The curves provide an intuitive illustration of different bipo-
larization situations within the confines of a 0.5x1 rectangle in quadrant I of the Cartesian
coordinate system. While the intersection of the RB Lorenz curve with the vertical right
axis provides a measure of the maximum relative spread between the means of the top and
bottom half of the distribution (i.e. when everybody is accounted for), the non-negative
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slope of the curve depends on the degree of clustering within both halves. The higher the
clustering the more linear the slope becomes.

As shown above, indices satisfying the key axioms of relative bipolarization rank dis-
tributions consistently if and only if the RB Lorenz curves do not cross. Therefore the RB
Lorenz curve quasi-ordering is actually identical to the quasi-ordering of relative bipolar-
ization curves characterized by Chakravarty (2009).
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