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1 Introduction

In federal unions, decisions are taken via two-tier voting systems: voters choose their repre-

sentatives in each state (district, region) and these representatives make the final choice, the

majority rule being generally used at each level. In such a context, it may happen that the

majority of the voters favour an opinion and the majority of the representatives opt for its nega-

tion. In social choice theory, this phenomenon is referred to as “referendum paradox” (Nurmi

1999), “compound majority paradox” or “election inversion” (Miller 2012). The referendum

paradox is not only a theoretical notion: it has been observed in various real political elec-

tions, including the US presidential elections and the French “cantonal” elections (Lahrach and

Merlin 2010). Its practical relevance explains why a number of studies have tried to compute

its theoretical and empirical likelihood: May (1948), Feix et al. (2004), Lahrach and Merlin

(2010), Lepelley et al. (2011), Miller (2012), among others. All the attempts to compute the

theoretical probability of this paradox only deals with the simplest case when a federal union is

divided into states with equal size. The first objective of the current study is to derive some an-

alytical representations giving the probability of the referendum paradox for federations with

three states having (possibly) unequal sizes. These representations are based on the widely

used Impartial Culture assumption, also called the Independence assumption in game theory

(Straffin 1977).

It is worth noticing that considering unequal populations makes the problem notably more

complex (and it is the reason why we only consider the three-state case) because we have now

to take into consideration the apportionment rule that associates a number of mandates (or a

weight) to each state. In practice, the apportionment rules represent a compromise between

the federal principle of state equality (one state-one vote) and the one man-one vote principle

allocating mandates proportionnally to the population of each state. For example, in the EU,

the number of mandated attributed to each state by the treaty of Nice was roughly proportional

to the square root of state populations. As we cannot consider all the possible apportionment

methods, we will focus our analysis on a particular class of rules, the δ-rules that allocate nδ

i

mandates to state i of population ni. Though restrictive, this assumption encompasses the pure

federalist case (δ = 0 and each state has one mandate), the square root rule case (δ = 1/2), the

pure proportionality case (δ = 1) and even the dictatorship of the biggest state (δ → ∞).

Which δ-rule should we choose? A well known answer to this question is based on the

notion of equalizing voting power: the best rule is the one which gives to each citizen the

same probability of being decisive, i.e. the same probability that his or her vote can change the

result of the election (see Felsenthal and Machover, 1998, for a detailed description of these

concepts). Penrose (1946, 1952) and Banzhaf (1965) have noticed that, under the Independence

assumption, equal treatment in terms of voting power is carried out when each state (district)

obtains a number of mandates proportional to the square root of its population. This result,

known as the Penrose square root rule, is today a classical reference for many studies on federal

unions and two-tier voting systems. Equalizing power is not, however, the only normative

criterion that one can imagine to study the merits of various δ-rules. Another criterion, recently

suggested by Lahrach and Merlin (2012), is related to referendum paradox: the best δ-rule is the

one which minimizes the probability of the referendum paradox. An interesting question is then

to know whether the square root rule remains optimal (under the Independence assumption)

when this alternative criterion is taken in consideration. Answering this question for the three-

state case is the second objective of this note.
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2 The general model

Consider a set I = {1, ... , i, ... , N} of N states (or regions, districts, etc.) which have to

take decisions altogether in a political union. We assume that ni voters live in state i, and
∑

N

i=1
ni = n. The vector ñ = (n1, ... , ni, ... , nN) describes the repartition of the population

among the N states. Without loss of generality, we will assume throughout the paper that

n1 ≥ n2 ≥ ... ≥ nN > 0. Two parties, A and B, compete in each state; the winner in state i
is the party who obtains a majority of voters on his side (abstention is not allowed). Each state

is represented by ai mandates in the union, and the winner in state i gets all the mandates. For

the sake of simplicity, we set that a1 ≥ a2 ≥ ... ≥ aN ≥ 0, with at least a1 strictly positive.

Thus, the position that is officially adopted by the union is the one which obtains a majority of

mandates at the federal level. Notice that we always use throughout the paper the quota of 50%

for all the decisions (votes in the states, vote of the delegates and popular vote nationwide).

We assume that the votes from states to states are always drawn independently. Thus, the

probabilistic behavior of a given state at the federal level is totally driven by the behavior of

its voters. We next assume that each vote is determined by flipping independently a fair coin

randomly, i.e. each citizen votes independently from the others and selects among the two

issues with equal probability. In game theory, this hypothesis has been called the Independence

assumption and has been used by Penrose (1946) and Banzhaf (1965) for measuring the voting

power on an elector; it is equivalent to the Impartial Culture (IC) model used in social choice

literature for the computation of voting paradox probabilities (Gehrlein 2006). We will restrict

our attention to this model in the current paper.

We focus our study on the family of δ-rules. That is, we assume that the vector of mandates,

ã, is entirely characterized by the parameter δ, δ ∈ [0,∞[ as ai = nδ

i
∀i = 1, 2, ... , N .

As mentioned above, one of our objectives is to check whether the recommendations we

should adopt when we wish to minimize the likelihood of the referendum paradox are compat-

ible with the solution that has been put forward when one wishes to equalize the power of the

citizens (δ = 0.5 for Penrose-Banzhaf or IC model).

3 Results for N = 3

Without loss of generality, we assume in the following that
∑

3

i=1
ni = n = 1, with n1 ≥ n2 ≥

n3 > 0. The distribution of the mandates is given by ã = (a1, a2, a3), with a1 ≥ a2 ≥ a3 ≥ 0,

and a1 > 0. We consider δ-rules only: ã = (nδ

1, n
δ

2, n
δ

3). But, for a weighted majority game

with three players, it is well known (see e.g. Leech 2002) that any vector ã = (a1, a2, a3) can

be identified with one of four possible cases that we shall study hereafter.

3.1 Case 1 : ã1 = (1, 1, 1)

All the states have the same power. ã is equivalent to ã1 if and only if nδ

1 < nδ

2 + nδ

3. This is

the most interesting case.

Proposition 1 Let P (ñ, ã1) be the likelihood of the referendum paradox for three states of large

population under IC (Penrose-Banzhaf assumption) for the distribution ñ when each state gets

one mandate. Then:

P (ñ, ã1) =
arccos

(√
n1

)

+ arccos
(√

n2

)

+ arccos
(√

n3

)

π
− 0.75 (1)

Proof: see Appendix.
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3.2 Case 2: ã2 = (2, 1, 1)

ã is equivalent to ã2 if and only if nδ

1 = nδ

2 + nδ

3. In case the opinion of states 2 and 3 conflicts

with the choice of state 1, a tie breaking rule could be implemented.

This very specific case only occurs when nδ

1 = nδ

2 + nδ

3. Moreover, we have to decide

how to interpret a 2:2 deadlock, when state 1 votes for A, while states 2 and 3 endorse B. A

latitudinarian interpretation of the definition of the referendum paradox would be to consider

this situation is never a paradox, as the popular winner is not defeated with the indirect voting

rule. On the opposite, a strict version of the paradox would consider all these situations as

paradoxical, if one posits that the popular winner should win with no discussion. In order to

derive probabilities, we will adopt a medium term. In case of 2:2 deadlock, we assume that

the election is decided by tossing a fair coin, which means that only half of these situations are

considered as paradoxical, depending whether or not the popular winner wins the draw.

Proposition 2 Let P (ñ, ã3) be the likelihood of the referendum paradox for three states of

large population under IC for the distribution ñ when ã = ã2. Then:

P (ñ, ã3) =
2 arccos

(√
n1

)

+ arccos
(√

n2

)

+ arccos
(√

n3

)

2π
− 0.375 (2)

Proof: see Appendix.

3.3 Case 3, ã3 = (1, 0, 0)

In that case, state 1 is a dictator. ã is equivalent to ã3 if and only if nδ

1 > nδ

2 + nδ

3.

Proposition 3 Let P (ñ, ã3) be the likelihood of the referendum paradox for three states of

large population under IC for the distribution ñ when state 1 is a dictator. Then:

P (ñ, ã3) =
arccos

(√
n1

)

π
(3)

Proof: see Appendix.

3.4 Case 4. ã4 = (1, 1, 0)

Player 3 is a dummy player and in case of opposite opinion for the two decisive states, a tie

breaking rule could be implemented. But no δ-rule can encompass this case for the majority

rule, as n3 > 0 (see Barthélémy et al. 2013).

3.5 Comparisons

By comparing the values given by the formulas derived for the three possible apportionment

cases, we are able to find the minimal value of the referendum paradox for each ñ. The corre-

sponding minimal values of the paradox for IC are displayed on Table 1. First, our findings are

consistent with the equal population case (ñ = (1/3, 1/3, 1/3) results (Feix et al. 2004). It is

also obvious from the proofs that the minimal values can never been be obtained with ã2.
By comparing P (ñ, ã1) and P (ñ, ã3), we observe that the former is inferior to the latter

(and a1 = (1, 1, 1) is optimal) if and only if:

n2 ≥ cos2
(π

4
+ arccos (

√
n3)

)

(4)
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Table 1: The minimal values for the referendum paradox for three states under IC.

n2 ↓ n3 → 0+ 0.05 0.10 0.15 0.20 0.25 0.30 0.333

0+ 0
+ −− −− −− −− −− −− −−

0.05 0.0718 0.1024 −− −− −− −− −− −−
0.10 0.1024 0.1266 0.1476 −− −− −− −− −−
0.15 0.1266 0.1476 0.1666 0.1813 −− −− −− −−
0.20 0.1476 0.1666 0.1845 0.1773 0.1727 −− −− −−
0.25 0.1666 0.1845 0.1824 0.1747 0.1698 0.1666 −− −−
0.30 0.1845 0.1952 0.1810 0.1730 0.1679 0.1648 0.1630 −−
0.333 0.1959 0.1948 0.1804 0.1722 0.1671 0.1641 0.1625 0.1623
0.35 0.2015 0.1946 0.1801 0.1719 0.1668 0.1639 0.1624 −−
0.40 0.2180 0.1943 0.1796 0.1714 0.1665 −− −− −−
0.45 0.2341 0.1941 0.1994 −− −− −− −− −−
0.50− 0.25− −− −− −− −− −− −− −−

In bold: probabilities derived from P (ñ, ã3).
Underlined: probabilities derived from P (ñ, ã1).

Then, one may notice that the square root rule, characterized by δ = 1/2, points toward the

majority game whenever
√
n1 ≤ √

n2 +
√
n3, and to the dictatorship otherwise. Solving this

inequality leads to :

n2 ≥
1

2
− n3

3
− 1

2

√

2n3 − 3n3
2 (5)

Equation (4) is displayed in bold on Figure 1 for values n2 and n3 compatible with our con-

straints (the interior of the triangle); above it, a1 is the optimal game, while a3 enjoys this status

below the line. By drawing equation (5), on the same figure, we identify below the dashed line

the ñ that the square root rule associates with the dictatorship of state 1. Clearly, the square

root rule fails to be optimal, as the games in between the two curves should be associated with

ã1. To give an example, consider ñ = (0.65, 0.30, 0.05) in Table 1. Using the square root rule

leads to the weights (0.806, 0.547, 0, 224) and the dictatorship of state 1, while ã1 is optimal.

By integrating the volumes between the two curves, we derive that the square root rule fails

to be optimal for 10.38% of the federations. This graphic interpretation suggests that a value

slightly smaller than 0.5 would enable us to move the dashed line closer to the optimal curve

described by equation (4).

4 Conclusion

Based on the Penrose-Banzhaf (or IC) hypothesis, which assumes that each voter chooses be-

tween A and B by tossing a fair coin, the exact formulas we have obtained for N = 3 demon-

strate that δ = 0.5 is not optimal for minimizing the probability of the referendum paradox.

Thus, the main conclusion of this note is that the square root rule, which stands for a long time

as the only normative recommendation for voting in federations, can be seriously contested.

For N > 3, the number of states becomes too important to give a complete enumeration

for all the cases. Moreover, obtaining formulas for more than three states, though technically

possible for N = 4 and N = 5, as in (Feix et al. 2004), would be cumbersome. So, the search

for an optimal allocation rule among the family of δ-rules when the number of states is higher

than three has to rely on computer simulations.

2205



Economics Bulletin, 2014, Vol. 34 No. 4 pp. 2201-2207

n3
0 0,1 0,2 0,3

n2

0

0,1

0,2

0,3

0,4

0,5

0,6

Figure 1: The boundaries between the majority game and dictatorship for the minimization of

the referendum paradox. Domains for the square root rule and the optimal δ rule under IC.
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