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Abstract
In business, wage renegotiations often result in dead weight losses (e.g, a delay in production or labor strikes). We

present a model in which one boss and two employees sign a wage contract before knowing what the future revenue

will be. Because of the inefficiency of renegotiation, the optimal wage contract minimizes the probability of

renegotiation. The boss will prefer to renegotiate when the contracted bonus is high compared to the realized revenue,

whereas the employees will when it is relatively low. We show that the probability of renegotiation under the optimal

contract and the expected efficiency loss from renegotiation increase as technology becomes more complementary.
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1 Introduction

The standard incomplete contract theory and that of property right theory (Gross-
man and Hart, 1986; Hart, 1995) consider contract renegotiation to be inefficient,
not because renegotiation itself is costly but rather because it results in a so-called
hold-up problem that can lead to underinvestment. In the business world, however,
the renegotiation process is indeed inefficient even in the absence of such underin-
vestment problems (e.g., it can delay production or even trigger a labor strikes).
Our work is a part of the growing literature on incomplete contracts that treats
renegotiation itself as inefficient (see Segal and Whinston (2013) for a survey of this
literature).

In particular, our work is most related to that of Hart (2009). Hart discusses
the structure of optimal contracts that minimizes the expected loss from inefficient
renegotiation. Although Hart focuses on trades between a single seller and a single
buyer and models the renegotiation between the two by using Nash’s bargaining
solution, Hart’s idea is applicable to many economic situations. In this paper, we
consider one such situation: wage bargaining between one boss and two employees.
Our proposal contains two features: (i) an explicit consideration of complementarity
between the employees; and (ii) the adoption of Shapley’s value as a solution to the
renegotiation stage when treating a case with three participants. Furthermore, we
discuss how these features affect the shape of the optimal contract and the welfare
(note that these features are relevant in our three-participant model, not in the
two-participant model in Hart (2009)). We also differ from Hart (2009) in the way
we interpret the inefficiency of renegotiation. Whereas Hart (2009) attributes the
source of renegotiation inefficiency to behavioral reasons, we interpret it as a delay
in production.

We show that when the employees are more complementary, it is more difficult to
prevent costly renegotiations. Our result predicts that costly renegotiations that can
results in strikes are more likely to occur in an industry where production technology
exhibits more complementarity, as in the automobile industry.

The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 discusses the factors that lead to renegotiation and those that do not
given the existence of a contract. Section 4 derives the optimal wage contract(s)
offered by the boss, the ex ante utilities of the participants, and the social surplus
under the contract. Section 5 describes how the welfare under the optimal contract
changes as the complementarity increases. In Section 6, we present our conclusion.

2 Model

Consider a boss B who is hiring two employees E1 and E2 for a future project.
Let N ≡ {B,E1, E2} denote the set of participants. The revenue from the project
depends on a state R, which is non-contractible and ex ante uncertain, and the state
R distributes according to a probability density function f with unbounded support
[R,+∞), for some R ∈ R.

First, B makes a take-it-or-leave-it offer of a grand wage contract w = (α1, α2, β1, β2)
to both employees. In this contract, αi is an ex ante payment which B pays to em-
ployee i immediately following the wage contract w. Moreover, βi is an ex post
payment that B pays to employee i after the state R is realized. Because R is non-
contractible, both αi and βi are constants that do not depend on R. After B offers
the grand contract w, both employees decide whether to accept the contract or not
simultaneously. If at least one of them rejects the contract, the game ends and all
participants receive their reservation utilities. We assume that the employees’ reser-



vation utilities are sufficiently small that B can offer a wage contract which gives
the employees more expected utility than their reservation utilities.

After the wage contract is signed and the ex ante payments are paid, the state
R is realized and observed by all three participants. Then, all three simultaneously
decide whether to make a renegotiation offer or not. If no one offers to renegotiate,
the participants continue to work on the project until it is complete. At this point,
the project yields revenue equal to R. Then, B pays β1 and β2 to E1 and E2

respectively, and collects the realized revenue R. Thus, the gain from completing
the project for B is R− β1 − β2 and the gain for the employees E1 and E2 is β1 and
β2, respectively.

If at least one of the participants offer to renegotiate, a costly renegotiation
occurs. From this renegotiation, it is determined who will continue to work on the
project and how the ex post surplus will be allocated. The ex post surplus equals
the revenue generated by the members who continue to work minus renegotiation
costs λ > 0. For any nonempty subset of the participants S ⊆ N , the ex post
surplus generated when only the members of S continue to work on the project is
denoted by v(S). We assume that, for some θ ∈ [1

2
, 1], v(S) is as follows.

v({B}) = v({E1}) = v({E2}) = v({E1, E2}) = −λ, (1)

v({B,E1}) = v({B,E2}) = (1− θ)R− λ, (2)

v(N ) = R− λ. (3)

We can interpret (1)–(3) as follows. Here, (1) means that B has an essential
asset, and that both the asset and at least one unit of labor are necessary for the
project to yield a positive surplus. Moreover, (2) and (3) mean that, given that B
continues to work on the project, (1 − θ)R is the additional revenue from the first
employee’s labor and θR is the additional revenue from the second employee’s labor.

In the above, θ measures the degree of technological complementarity between
the employees in the project. When θ = 1, the employees are perfect complements.
In this case, if either employee chooses to leave the project, the project will earn
nothing. As such, B and both employee are pivotal to success the project. When
θ = 1/2, the employees are perfect substitutes. In this case, given thatB continues to
work on the project, the first and second employees will produce the same additional
revenue.

During a renegotiation, the ex post surplus is allocated to the participants
through bargaining. We follow Hart and Moore (1990) in adopting the Shapley
value as our solution to the bargaining game.1 The characteristic function in this
bargaining game is the function v described above. We assume that R − λ > 0.
This guarantees that given that all participants continue to work on the project, the
project will yield a positive ex post surplus even when the worst state R is realized.

We denote the Shapley values of B, E1, and E2 by φB, φE1
, and φE2

, respectively.
φB, φE1

, φE2
can be computed as follows (see Appendix A for a detail).

φB =
1

6
{−2λ+ (4− 2θR)}. (4)

φE1
= φE2

= φE =
1

6
{−2λ+ (1 + θ)R}. (5)

Because φE1
= φE2

, we drop the subscript i on φEi
hereafter.

Finally, we should remark the solution to the renegotiation stage in this paper
and Hart (2009). Whereas our solution adopts Shapley value, Hart’s adopts Nash

1For a noncooperative justification of the use of Shapley value, see Gul (1989).



bargaining solution. Nevertheless, this difference is superficial. When the utilities
are transferable and the number of participants is two, Shapley value and Nash
bargaining solution have the same value. Thus, these two solutions are equal in the
setting described by Hart (2009) (See Appendix A for a detail).

3 When Renegotiation Occurs

To understand when a contract w ≡ (α1, α2, β1, β2) is optimal for B, this section
investigates under what state R a renegotiation occurs and under what state R no
renegotiation occurs given w.

According to (4) and (5), given a contract w = (α1, α2, β1, β2) and R, all par-
ticipants’ payoffs without renegotiation are equal to or higher than their respective
payoffs after renegotiation when

R− β1 − β2 ≥
1

6
{−2λ+ (4− 2θ)R} and min{β1, β2} ≥

1

6
{−2λ+ (1 + θ)R}.

(6)

If (6) does not hold, the contract is renegotiated. We assume that none of the
participants chooses a weakly dominated action at this stage. Thus, when both
inequalities in (6) hold with strict inequality, no participant makes an offer to rene-
gotiate. When either one of the inequalities holds with equality, a renegotiation may
or may not occur in an equilibrium. However, because the ex ante probability of
this event is zero, this multiplicity does not affect the ex ante payoff or the optimal
contract.

Note that the ex ante payments α1 and α2 do not appear in this condition because
they have already been paid and sunk when the participants decide whether or not
to make a renegotiation offer. (6) can be rewritten as follows.

RL(β1, β2) ≡
3β1 + 3β2 − λ

1 + θ
≤ R ≤

6min{β1, β2}+ 2λ

1 + θ
≡ RH(β1, β2). (7)

In (7), the left and right inequalities correspond to the left and right inequalities
in (6), respectively. When the ex post payments are symmetric, β = β1 = β2 for
some β, (7) is represented as

RL(β, β) ≡
6β − λ

1 + θ
≤ R ≤

6β + 2λ

1 + θ
= RL(β, β) +

3λ

1 + θ
. (8)

When R /∈ [RL(β1, β2), RH(β1, β2)], at least one participant offers to renegotiate
and a renegotiation occurs. Thus, the probability of renegotiation is

∫

R/∈[RL(β1,β2),RH(β1,β2)]
f(R)dR,

which is always positive because f has unbounded support.
The social surplus under a pair of ex post payments (β1, β2) is

W (β1, β2) = E(R)− λ

∫

R/∈[RL(β1,β2),RH(β1,β2)]

f(R)dR. (9)

4 Optimal Wage Contract

In this section, we describe the optimal contract offered by B at the beginning
of the game. This optimal contract maximizes B’s ex ante utility. Let UB, UE1

,
and UE2

be the ex ante utilities for B, E1, and E2, respectively. Under an arbitrary



contract w ≡ (α1, α2, β1, β2), the ex ante utilities are computed as follows.

UB = W (β1, β2)− UE1
− UE2

,

UEi
= αi + βi

∫ RH(β1,β2)

RL(β1,β2)

f(R) dR +

∫

R/∈[RL(β1,β2),RH(β1,β2)]

φE(R)f(R) dR ≥ UEi
for i = 1, 2.

Note that the social surplus W (β1, β2) is the sum of the ex ante utilities UB, UE1
,

and UE2
. UEi

is the sum of three terms: the ex ante payment αi, which employee
i receives ex ante; the ex post payment βi multiplied by the probability that the
contract will not be renegotiated–i.e., the probability of R ∈ [RL(β1, β2), RH(β1, β2)];
and φE(R) multiplied by the probability of renegotiation–i.e., the probability of
R /∈ [RL(β1, β2), RH(β1, β2)].

Thus, the optimal wage contract w∗ ≡ (α∗
1, α

∗
2, β

∗
1 , β

∗
2) solves the following:

max
(α1,α2,β1,β2)∈R4

UB ≡ W (β1, β2)− UE1
− UE2

subject to

UEi
≡ αi + βi

∫ RH(β1,β2)

RL(β1,β2)

f(R) dR +

∫

R/∈[RL(β1,β2),RH(β1,β2)]

φE(R)f(R) dR ≥ UEi
for i = 1, 2.

The constraints Ui ≥ UEi
for i = 1, 2 guarantee both employees’ participation by

maintaining their ex ante utility levels not less than their reservation utility levels
UE1

and UE2
.

Theorem 4.1. Let w∗ ≡ (α∗
1, α

∗
2, β

∗
1 , β

∗
2) be the optimal contract, offered by B at the

beginning of the game given the complementarity between the employees θ. Further-
more, we denote the ex ante utility levels for B, E1, and E2 and the social welfare

level attained by the contract w∗ by U∗
B, U

∗
E1
, U∗

E2
, and W ∗, respectively. Then, w∗

always exists and

α∗
i = UEi

− β∗
i Prob

(

R ∈

[

6β∗
1 − λ

1 + θ
,
6β∗

1 + 2λ

1 + θ

])

−

∫

R/∈[RL(β
∗

1
,β∗

2
),RH(β∗

1
,β∗

2
)]

φE(R)f(R) dR for i = 1, 2,

β∗
1 = β∗

2 =
(1 + θ)R∗

L + λ

6
,

R∗
L ∈ argmax

x
Prob

(

R ∈

[

x, x+
3λ

1 + θ

])

,

U∗
E1

= UE1
, U∗

E2
= UE2

, U∗
B = W ∗ − UE1

− UE2
, and

W ∗ = E(R)− λ · Prob

(

R /∈

[

6β∗
1 − λ

1 + θ
,
6β∗

1 + 2λ

1 + θ

])

.

If f is single-peaked, R∗
L is unique and hence w∗ is unique too. Especially, if f is

decreasing in its support, R∗
L = R.

Proof. See Appendix A.
Despite of the asymmetry of the employees’ reservation utilities, the optimal

ex post payments are symmetric. This is because the difference in the reservation
utilities exclusively affects the optimal ex ante payments. In fact, B chooses the
interval without any renegotiation [x, x + (3λ/(1 + θ)] through ex post payments
in order to maximize the probability that the contract will not be renegotiated.
Therefore, W ∗ and U∗

B decrease as the probability distribution of the state R flattens.
Conversely, they increase with less variance to the probability distribution.



5 Complementarity and Welfare

In this section, we investigate the relation between the complementarity θ and
the social welfare under the optimal contract.

Given arbitrary symmetric ex post payments (β1, β2) = (β, β), the probability

that the contract will not be renegotiated
∫ RL(β,β)+{3λ/(1+θ)}

RL(β,β)
f(R)dR strictly de-

creases with θ unless β is so small that RL(β, β) + {3λ/(1 + θ)} < R. When
RL(β, β) + {3λ/(1 + θ)} < R, β is not optimal because the probability that the
contract will not be renegotiated increases when setting β as RL(β, β) = R. Thus,
under the optimal contract, the probability that the contract will not be renegotiated
and the welfare level under the optimal contract both decrease with θ.

As a result, we have the next theorem.
Theorem 5.1. Let W ∗(θ) be the social surplus for complementarity between the

employees θ. Then, W ∗(θ) strictly decreases with θ.

Why does W ∗(θ) decrease with the degree of complementarity θ? We must first
note that B’s Shapley value φB decreases with θ, because B’s marginal contribution
depends on θ only when B is the second participant with a marginal contribution
that is decreasing with θ at that time. Thus, the ratio of B’s Shapley value to the
ex post surplus during renegotiation R − λ decreases with θ and hence that of the
employees increases with θ. Therefore, the employee’s Shapley value φE is more
correlated with R for a large θ than for a small θ. According to (6), when both the
employees’ ex post payments are β, the probability that the contract will not be
renegotiated equals the probability that the following inequality holds:

β ≤ φE ≤ β +
λ

2
.

When θ is large, φE varies considerably as R changes. Hence, the above inequality
is unlikely to hold.2

These results suggest that the boss should decrease their employees’ ex post
bargaining power by adopting less complementary technology when possible. By
adopting less complementary technology, the boss is more likely to avoid haggling
over wages. It is worth noting that the boss benefits not from exploiting the employ-
ees but rather by making renegotiation less likely. In practice, making technology
less complementary risks decreasing productivity. In such cases, the boss faces a
trade-off between productivity and the expected renegotiation costs.

Finally, it is worth noting that it is not straightforward how welfare is affected
when renegotiation costs λ increase. As λ increases, the probability of a renegoti-
ation decreases, but the loss in efficiency in the event of a renegotiation increases.
Thus, an increment of λ can either improve or worsen the welfare. With the bounded
support of R, the first best welfare would be achieved both when λ = 0 and when
λ is sufficiently high. Muramoto (2013) discussed how participants’ payoffs and the
welfare level change as renegotiation costs increase in a two-participant model with
a binary state.

6 Concluding remarks

We developed an incomplete contract model in which a boss offers a non-contingent
wage contract to two employees, where renegotiations of this contract are costly. We

2The discussion here is closely similar to that concerning the “self-enforcing” price range in
Hart (2009).



characterized the shape of the wage contract, the participants’ utility levels, and the
social surplus in equilibrium. We also showed that the social surplus decreases in
proportion to the complementarity between the employees, because the stronger the
employees’ bargaining powers are, the more difficult it becomes to prevent renego-
tiation.

Unlike in a standard dynamic principal-agent model, the participants cannot
sign a so-called “renegotiation-proof” contract: a contract that prevents renegoti-
ation even if any possible state R is realized. This is because the contracts are
incomplete. If contracts were complete–and, as such contingent on R–the renego-
tiation can be prevented by changing the wage according to R. However, in our
model, the participants need to renegotiate in order to change the wages according
to R owing to the incompleteness of the contracts.

Our results are consistent with those in Hart (2009). Indeed, the sensitivity
of the bargaining position to non-contractible and uncertain variables affects the
contracting parties’ ability to prevent costly renegotiations. This, in turn, affects
the social surplus. A primary difference between this work and Hart’s, however, is
that we investigate the relation between the social surplus and the complementar-
ity, which affects bargaining position indirectly through the characteristic function.
By contrast, Hart investigated the relation between the social surplus and asset al-
locations, which was assumed to affect the sensitivity of the bargaining positions
directly.

Appendix A

The Shapley Value: In order to compute the Shapley value, note that there are
six possible coalition formation orders.

(i)BE1E2, (ii)BE2E1, (iii)E1BE2, (iv)E1E2B, (v)E2BE1, (vi)E2E1B.

Each player’s Shapley value is computed as the average of that player’s marginal
contributions to the six possible grand coalition formation orders.

First, we compute φB. In (i) and (ii), B is the first participant: hence, B’s
marginal contribution is v(B) = −λ. In (iii) and (v), B is the second participant;
hence, B’s marginal contribution is v({B,Ei})−v({Ei}) = (1−θ)R. In (iv) and (vi),
B is the final participant; hence, B’s marginal contribution is v(N )− v({E1, E2}) =
R. Thus, we have (4) as follows:

φB =
1

6
{ 2(−λ) + 2(1− θ)R + 2R} =

1

6
{−2λ+ (4− 2θR)}.

Second, we compute φE1
. In (iii) and (iv), E1 is the first participant with a

marginal contribution of v({E1}) = −λ. In (vi), E1 is the second participant and E2

is the first participant. Thus, E1’s marginal contribution is v({E1, E2})−v({E2}) =
0. In (i), E1 is the second participant and B is the first participant. Thus, E1’s
marginal contribution is v({B,E1})− v({B}) = (1− θ)R. In (ii) and (v), E1 is the
final participant with a marginal contribution of v(N )−v(N \{E1}) = θR. Finally,
φE2

= φE1
, because of the symmetry between E1 and E2. Hereafter, we drop the

subscript i on φEi
. Thus, we have (5) as follows:

φE =
1

6
{2(−λ) + 0 + (1− θ)R + 2θR} =

1

6
{−2λ+ (1 + θ)R}.

Equivalence of Nash bargaining solution and Shapley value: Now, we show
Nash bargaining solution and Shapley value are equivalent when the number of



players are two and their utilities are transferable. Suppose that there are two players
1 and 2 and utilities are transferable. Let v be the characteristic function. With
Nash bargaining, each player i’s payoff is 1/2[v({1, 2}) − v({1}) − v({2})]+v({i}).
On the other hand, the Shapley value is computed as 1/2[v({1, 2}) − v({j})] +
1/2v({i}) = 1/2[v({1, 2})− v({1})− v({2})] + v({i}) for j ̸= i. The equivalence is
thus demonstrated.
Proof of Theorem 4.1: Let U∗

B, U
∗
E1
, U∗

E2
, and W ∗ denote the ex ante utility

levels and social welfare attained under the optimal contract w∗. Because W is
independent of α1 and α2, they are selected such that UEi

= UEi
for each i:

α∗
i = UEi

−β∗
i

∫ RH(β∗

1
,β∗

2
)

RL(β
∗

1
,β∗

2
)

f(R) dR−

∫

R/∈[RL(β
∗

1
,β∗

2
),RH(β∗

1
,β∗

2
)]

φE(R)f(R) dR for i = 1, 2.

Next, β∗
1 and β∗

2 are selected to maximize W (β1, β2), or equivalently the proba-

bility that the contract will not be renegotiated
∫ RH(β1,β2)

RL(β1,β2)
f(R) dR.

We prove β∗
1 = β∗

2 by contradiction. Suppose that β∗
1 ̸= β∗

2 . Let β ≡ (β∗
1 +β∗

2)/2.
According to (7), RH(β, β) > RH(β

∗
1 , β

∗
2) and RL(β

∗
1 , β

∗
2) = RL(β, β). According to

the assumption on the support of f ,
∫ RH(β,β)

RL(β,β)
f(R)dR >

∫ RH(β∗

1
,β∗

2
)

RL(β
∗

1
,β∗

2
)
f(R)dR. Thus, a

contradiction arises.
According to (8), β∗

1 and β∗
2 are selected such that

β∗
1 = β∗

2 =
(1 + θ)R∗

L + λ

6
for some R∗

L ∈ argmax
x

∫ x+ 3λ

1+θ

x

f(R) dR. (10)

Finally, we show that there always exists some R∗
L that satisfies (10), but its

uniqueness depends on the shape of the probability density function f . We can

show the existence of R∗
L as follows. Let A ≡

∫ R+{3λ/(1+θ)}

R
f(R)dR. Then, there

exists a K such that
∫ RL+{3λ/(1+θ)}

RL

f(R)dR < A for any RL > K. If not, we

can choose an infinite sequence R1, R2, . . . such that Ri+1 − Ri > 3λ/(1 + θ) and
∫ Ri+{3λ/(1+θ)}

Ri

f(R)dR > A for all i. For n > 1/A,
∫ Rn

R
f(R)dR >

∑n
i=1

∫ Ri+{3λ/(1+θ)}

Ri

f(R)dR >
nA > 1. It is therefore a contradiction.

The function
∫ RL+3{λ/(1+θ)}

RL

is continuous and hence has its maximum in the

closed interval [R,K]. We denote the maximum byB. Then, B ≥ A ≥
∫ RL+{3λ/(1+θ)}

RL

f(R)dR
for any RL > K. Then, B is the global maximum. The existence has thus been
shown.

R∗
L is unique when f is single peaked: for some M ≥ R and for any R,R′ ≥ R

(i) if R < R′ < M , f(R) < f(R′) < f(M) and (ii) if M < R < R′, f(M) >
f(R) > f(R′). Furthermore, when M = R, or equivalently, when f is decreasing in
its support such as with an exponential function and Pareto distribution, R∗

L = R
and β∗ = (1 + θ)R + λ/6. For some non-single peaked density function f , R∗

L is
not unique. Suppose that for some ∆ > 3λ/(1 + θ), f(R) = r for R ∈ [R, R + ∆]

and f(R) < r for R > R + ∆. In this case, argmaxx
∫ x+{3λ/(1+θ)}

x
f(R)dR =

[R, R+∆−{3λ/(1+θ)}] and the corresponding optimal symmetric ex post payments
β∗ exist infinitely in the continuum.
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