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Abstract

This study investigates how technological advances in self-insurance (or self-protection) affect the optimal level of
self-insurance (or self-protection) and that of insurance, if insurance is also taken into account. Conditions are derived
for determining the signs of changes in the optimal levels of decision variables due to improved technology. Two
cross-derivatives are found to be the key factors. Classification of technological advances is suggested based on the
two cross-derivatives. The results show that when analyzed pairwise, “neutral” technological advances, according to
the classification, decrease the optimal level of self-insurance and that of insurance, but increase the optimal level of
self-protection and that of insurance.
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1. Introduction

Self-insurance, by definition, mitigates the severity of loss, whereas self-protection reduces
the likelihood of loss. In what follows, these two risk reduction measures are collectively
termed “self-efforts.” This study is motivated by a proposition in the appendix of a seminal
paper by Ehrlich and Becker (1972). The proposition, which has seemingly received little
attention due to the lack of details, argues that the improvement of self-protection technology
leads to an increase in the optimal level of self-protection and that of insurance under certain
assumptions. Since their paper was published, there have been numerous extensions of it
being worked out from various aspects. Nevertheless, it appears that none of the extensions

has been found relevant to technological advances in self-efforts.

This study aims to cover a greater range of topics and provide insights into the fundamental
causes in its own context. In addition to revisiting their proposition that analyzes self-
protection along with insurance in different settings, this study also explores the effects of
improved self-insurance or self-protection technology in the event that either self-insurance
or self-protection is the only decision variable, and that self-insurance and insurance are
considered jointly. Moreover, this study takes a closer look at the factors, especially two
cross-derivatives, which determine whether the optimal levels of self-efforts and insurance
increase, decrease, or remain the same with improved technologies. An approach is suggested

to categorize technological advances by the two cross-derivatives.

Two main characteristics of modeling distinguish this study from Ehrlich and Becker (1972):
(1) Two-period framework. Menegatti (2009) gives several convincing examples and points
out that a suitable choice between a one-period model and a two-period model depends on
whether the effort and the occurrence of loss are “contemporaneous.” In this sense, two-
period framework, other than their one-period models, may be natural to model intertemporal
decisions for a scenario like purchasing fire extinguishers at present to reduce the loss
potentially occurring sometime in the future. Furthermore, it seems inappropriate or even
infeasible to analyze some decision variables, e.g. saving, financial or physical investments,
in a one-period framework. A merit of two-period framework is allowing future studies to
incorporate this type of decision variables into existing two-period models and make
comparisons. (ii) Nonlinear costs. This study generalizes their linear costs of self-efforts and

insurance to nonlinear ones so that the effects of nonlinearity can be investigated.

2. Technological Advances

2.1 Definitions of technological advances



We begin with the definitions of technological advances since they are not explicitly defined
in Ehrlich and Becker (1972). As a concrete example, either more total capacity of the
extinguishing agent contained in the extinguishers (self-insurance effort) or more effective
extinguishing agent with improved chemical composition (self-insurance technology)
mitigates the loss if it occurs. A parameter T measuring the level of self-insurance
technology is introduced to study its effects. It is called technological advance in self-
insurance if the size of potential loss [ is reduced at every given level of self-insurance

effort n, which can be formulated as

ol
L=1(n;1); 3; <0 €Y

Likewise, suppose that 8 measures the level of self-protection technology. It is called
technological advance in self-protection if loss probability p is lowered at every given level

of self-protection effort e:

— ey L <o 2
p=p(eb); o5 : (2)

Note that efforts 7 and e are decision variables, whereas technologies 7 and 8, parameters
for the modeling in Section 3. Geometrically, [ decreases with 7 along the curve [ =
l(n; T), whereas an increase in 7 causes a downward-shift of the curve. The same

interpretation also applies to the self-protection case.
2.2 The cross-derivatives and technological advances classification

As will be shown later, it is to be highlighted that there are two cross-derivatives, dl'/dt and
dp' /080, that play crucial roles in determining the signs of changes in the optimal levels of
self-efforts as technologies are improved, where ' = dl(n;t)/dn < 0 and p’' =

dp(e; 0)/de < 0 are the “efficiencies of self-efforts” in contrast to the “efficiencies of
technologies,” dl/dt < 0 and 0dp/06 < 0. The intuition behind the cross-derivatives is
elaborated as follows: improved extinguishing agent per se mitigates the potential loss in
terms of technology (0l/dt < 0). On the other hand, for example, suppose its density or
viscosity may extend or shorten the range to which it can be discharged and thus may
enhance (dl'/dt < 0) orundermine (dl'/dt > 0) the efficiency (I’ < 0) of
extinguishing agent in terms of effort.

With these two cross-derivatives, we are allowed to classify technological advances into three
categories by whether technological advances constructively or destructively interfere the
efficiencies of self-efforts. For convenience, the three categories are tentatively termed as

follows:



(1)  Undermining technological advances (dl'/dt > 0, dp'/d08 > 0);

(ii)  Neutral technological advances (0l' /0Tt = 0, dp’ /06 = 0);

(iii) Enhancing technological advances (0l' /0t < 0, dp' /06 < 0).

To picture the ideas mentioned above, we summarize with Fig.1, 2, and 3 for the self-
insurance case. The figures for the self-protection case can be easily obtained by

replacing (I,n,t) with (p, e, 8). Note that the slope of a curve in the figures is the efficiency
of self-effort I'. Thus, the steeper the slope, the better the efficiency.
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3. The Models
3.1 Self-Insurance

This subsection considers the case that the only means of risk mitigation under consideration
is self-insurance, e.g., pesticide used to reduce the agricultural damage caused by pests.
Either a larger amount of pesticide (effort) or improved composition of pesticide (technology)
mitigates the damage. Advanced composition kills pests more effectively but may shorten
(undermining T.A.) or lengthen (enhancing T.A.) the duration of pesticide that remains in the
fields (efficiency of effort). Risk averters are to optimally allocate their initial wealth w;
over two periods: the present and the future, denoted by subscript 1 and 2 respectively. They
face a potential loss with probability p € (0,1) and size [(n; T), which can be mitigated by
self-insurance effortn (I' < 0; ' > 0) as well as the level of self-insurance technology

T (0l/0t < 0). Suppose that subscript L stands for the loss state, whereas N, the no-loss
state. Their utilities u; are assumed to be separable and additive over two periods and
discounted by B € (0,1], which sum up to the objective function U. They maximize U by
choosing the optimal level of n with cost function c(n) (¢’ > 0; ¢'" = 0), as shown in the
following model:



mglx U =us+ Blpuy, + (1 —plugyl, 3)

where u; = u(wy —c());  ug = u(wy, — (5 1)); Uy = u(wy).
Let the asterisk symbol (*) denote dependent variables evaluated at a critical point. Suppose

that there exists n* so that the first-order condition holds:

Uy = —c"uj’ = Bpuzy L™ = 0. @
The second-order condition is satisfied under the assumptions made above:
U;n = _C”*U1*+(C’*)2u1,* + 'Bpulzrzc(ll*)z _ ﬁpu'ﬁl"* < 0. (5)

First of all, one might ask whether an agent would choose to stay with old technology if only

“undermining” technological advances were available. Proposition 1 rules out the possibility:

Proposition 1. (See Appendix A for proof.)
All technological advances defined in this study, even undermining technological advances,
are always desired by an agent.

After the comparative statics analysis, we have the condition for determining the sign of the

optimal level of self-insurance as in (6) (See Appendix B for details):

al'”
an* W I* *
sgn {a_r} = sgn ol +1"R3; ¢, (6)
ot
where “sgn” represents a sign function and R;;, = —uj; /uy;, the coefficient of absolute risk

aversion evaluated at the optimum in the loss state during period 2. It may be worth noting

the following two points:

1) With dl* /9t < 0, it can be observed from (6) that the optimal level of self-effort is
inclined to increase, remain the same or decrease with enhancing, neutral, or
undermining technological advances, respectively. It is true throughout the paper.

(i1) In fact, all the conditions for determining the signs in this paper take the same form as
in (6) (see Appendix B, C, E, and G for the conditions in each case). There are two
terms in the braces on the right hand side of the equity: the first term concerns
technological improvement, whereas the second term concerns the other factors as a
whole, including risk aversion if self-insurance is involved. These two terms
simultaneously determine the sign. In some cases, factors other than technological
advances are irrelevant and hence the second term vanishes from the braces. Thus,
with 91" /0t < 0, the sign depends only on the cross-derivative as shown in (11) and
(20).

To be concise, we will not repeatedly go through the above two points in the latter part of this

paper. From (6), we readily obtain Proposition 2:



Proposition 2. (See Appendix B for proof.)
The optimal level of self-insurance declines with neutral or undermining technological

advances:
al’*>0=>an*<0 7
ot ot ' (7)

3.2 Self-Protection

In this subsection, all the settings remain the same as in Subsection 3.1 except that the only
risk management tool considered here is self-protection, e.g., burglar alarms used to reduce
the probability of burglary. Either a larger number of alarms (effort) or improved
effectiveness of alarms (technology) lowers the likelihood of burglary. However, for example,
the component or the design that improves effectiveness may shorten (undermining T.A.) or
extend (enhancing T.A.) each alarm’s range of detection (efficiency of effort). To model the
above scenario, suppose that the probability of loss p(e; ) (p' < 0; p"’ = 0) may be
lowered by either more self-protection effort e with cost function k(e) (k' > 0; k" = 0) or

better self-protection technology 8 (dp/06 < 0). The model can be expressed as
mglx U=u, + ,B[p(e; 0)u,, + (1 —p(e; 9))u2N], (8)

where u; = u(wl — k(e)); Uy, =ulwy, —0);  uyy = u(wy).

The first-order condition:

Us = —k"uy" + Bp" (uz, — uzy) = 0. ©)
The second-order condition holds:
Use = —k'""ui"+(k'"™ Zu{’* + Bp'" (U, —uyy) < 0. (10)

The comparative statics analysis yields Proposition 3:

Proposition 3. (See Appendix C for proof.)
As self-protection technology is improved, the sign of change in the optimal level of self-
protection is opposite to that of the cross-derivative dp'*/96:

G} = —sen {55} 1
sgnag—sgnae. (11)

3.3 Self-Insurance and Insurance

In the following model, self-insurance and insurance are analyzed jointly, e.g., allocating
wealth among consumption, pesticide, and insurance against damage caused by pests.

Insurance premium is determined by a pricing schedule w(q) (7' > 0; " = 0), which is a



generalization of linear insurance pricing schedule m(q) = 77q with constant price of

insurance 7, as assumed in Ehrlich and Becker (1972).

Tfyl’%x U =us+ Blpuy, + (1 — plugyl, (12)

where u; = U(W1 —c(m) - F(Q))J Uy, = u(wy, =10 1) + Q)5 upy = u(wy).

The first-order conditions:

Uy = —c™ui’ — Bpuzil” =0, (13)
Uy = —n""ui" + Bpuy, = 0. (14)
The second-order conditions are satisfied:

Upy = —c""ug™+(c™)?uy”™ + Bpuy; (I")?* — Bpuy I <0, (15)
Ugq = —t""uf+(m"*)?uy™ + Bpuy; <0, (16)
U;q — C’*T[,*uil* _ﬁpué’if I'x < 0’ (17)
Hyq=UnUgq — (U,’;q)2 > 0. (See Appendix D for proof.) (18)

The comparative statics analysis concludes with Proposition 4:

Proposition 4. (See Appendix E for proof.)
Undermining or neutral technological advances decrease the optimal level of self-protection,

whereas enhancing or neutral technological advances decrease the optimal level of insurance:

al'*>0$6n*<0. al'*<0=>6q*<0 19
ot — ot oot T ot ' (19)
In particular, for linear insurance pricing schedule, we have m(q) = Tq or" = 0. Thus,

the only factor that matters for determining the sign of dn*/dt is the cross-derivative

dl'" /0, whose sign is opposite to dn*/9t:
(@) = 7q = {an*} = o 20
n(q) = mq = sgn 57 = sgn 37 (" (20)

When the above equalities both hold in (19), i.e., in the case of neutral self-insurance

technological advances, the optimal level of self-insurance and that of insurance decline.
3.4 Self-Protection and Insurance

Following a similar path in the previous subsection, we study here how the optimal level of
self-protection and that of insurance respond to technological advances in self-protection,

e.g., allocating wealth among consumption, burglar alarms, and insurance against burglary:
n;c(qu U=u, + ,B[p(e; 0)u,, + (1 —p(e; 9))u2N], (21)

where u; = u(w1 —k(e) — n(q)); Uy =uwy —1+q); Uy = ulwy).



The first-order conditions:

Ug = —k""ui" + pp" (u3, — uzy) =0, (22)
Ug = —n"ui" + Bp*uy, = 0. (23)
The second-order conditions:

Uge = k""" ui"+(k")?wi™ + Bp"* (uz, — uzn) <0, (24)
Ugq = —t""uf +(n"*)*u)™ + Bp*uy; <0, (25)
Ugq = k""" ui™ + Bp"uy;, <O. (26)

However, the sign of the Hessian is ambiguous and assumed to be positive as done in Ehrlich
and Becker (1972) (See Appendix F for details). By implementing the comparative statics

analysis, we have Proposition 5:

Proposition 5. (See Appendix G for proof.)
Both the optimal level of self-protection and that of insurance increase with neutral and

enhancing self-protection technological advances:

P 05250 P09 5 27
0 =""3 " " 38 =""20 " @7)

Proposition 5 can be regarded as a robustness test since the above results are in conformity

with the proposition presented in Ehrlich and Becker (1972) in a different context.
4. Conclusion

Undermining, neutral, or enhancing technological advances tend to decrease, maintain, or
increase the optimal levels of self-efforts, respectively. Nevertheless, non-neutral
technological advances in self-efforts may conflict with the resultant effects of the other
factors and hence may have ambiguous effects. By contrast, the effects of neutral
technological advances are clear-cut. When either self-insurance or self-protection is
considered individually, neutral technological advances decrease the optimal level of self-
insurance but do not affect that of self-protection. When either self-insurance or self-
protection is analyzed along with insurance, the optimal levels of self-insurance and
insurance decrease, whereas those of self-protection and insurance increase, with neutral
technological advances. Furthermore, there unambiguously appears to be a sort of symmetry
that undermining technological advances decrease the optimal level of self-insurance,

whereas enhancing technological advances increase that of self-protection.

! The author thanks an anonymous referee for pointing out the symmetry.
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Appendix

= l(n*(wll WZ;B;pyT);T); C* = C(n*(wll WZ)ﬁ) p:T));
p* =p(e*(wy,wy, 8,1,0);0); k* = k(e*(wy, wy, 5,1,6)).

A. Proof of Proposition 1
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Technological advances in the other three cases in Section 3.2, 3.3, and 3.4 can also be

proved advantageous for an agent in a similar manner.

B. Proof of Proposition 2
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C. Proof of Proposition 3
—k"uy" + Bp" (uz, —uzy) = 0
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D. Derivation of the Hessian in Subsection 3.3
Combining (13) with (14) yields
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F. Derivation of the Hessian in Subsection 3.4
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The sign of He,q is ambiguous and assumed to be positive.

G. Proof of Proposition 5
Combining (22) with (23) yields
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