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Abstract
Index of refraction is found to be a good measure of economic inequality within the Lorenz curve framework. It has

origin in geometrical optics, where it measures bending of a ray of light passing from one transparent medium into

another. As light refracts according to characteristics of different media, so also Lorenz curve does according to

concentration of wealth or income in different strata. In line with this analogy, first I compute refractive index for each

stratum under the Lorenz curve framework to evaluate condition in each and then simply add all to propose an overall

measure for the whole framework. The latter appears to be pro transfer-sensitive and equivalent to the measures

based on length of the Lorenz curve. Also, it is related to transfer-neutral Gini coefficient by quadratic equation. The

applicability of the approach is tested utilising data on distribution of income or consumption from the WDI 2014.

Results are lively and remarkable. While an index value of less than 1.00 represents an ‘anomalous refraction' in

optics, such a condition of inequality appears to be too common for many of us in reality. In contrast to that, in some

countries, the refractive index of the richest group exceeds that of Diamond (2.42), where an index value of 1.00

depicts an ideal condition that is enviable. Although the preliminary exercise is done with grouped data, it can be

extended vividly to the case when the Lorenz curve is continuous.
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1. Introduction 

 

Index of refraction has origin in geometrical optics, which deals with the propagation of light 

by geometrical means and establishes some fundamental principles on refraction of light and 

the law by which it is governed, such as Snell's law, etc. (Mazumdar 1983). Whenever a ray 

of light proceeds from one homogeneous transparent medium into another, its path is bent at 

the junction of these two media and this bending of ray is called refraction of light. Index of 

refraction or refractive index is a quantity, which measures the extent of bending of a ray of 

light in the aforesaid conditions (Jenkins and White 1981, and Mazumdar 1983). Such a 

concept is akin to that of the Gini coefficient under the Lorenz curve framework, as the latter 

measures the extent to which the distribution of income or consumption expenditure among 

individuals or groups within an economy deviates from a perfectly equal distribution. If we 

consider the unit square of the Lorenz curve framework superimposing the ideas of 

geometrical optics on it, we realise that in case of an ideal condition, light (or equivalently the 

Lorenz curve) passes diagonally without refraction. In the presence of inequality, however, it 

deviates from the hypothetical line of absolute equality and is seen to refract while passing 

from one stratum into another. The sole objective of this paper is to introduce a new measure 

of economic inequality in analogue to the index of refraction for each stratum under the 

Lorenz curve framework as well as for the complete framework.  Consequently, I use simple 

mathematical tools (following Snell's law) to measure refractive index for each stratum as a 

measure of inequality associated with it with respect to the ideal condition, and treat a simple 

summation of those for all the strata as an overall measure of inequality for the whole Lorenz 

curve framework.  The exercise is done for the World Bank member countries utilising data 

on distribution of income or consumption from the World Development Indicators (WDI) 

2014. In this context it is to be mentioned that although the indices of refraction and the 

overall measure of inequality are computed for fewer groups, the exercise can be extended 

vividly to the cases when number of groups or individuals is sufficiently large or when the 

Lorenz curve is continuous. 

 Further, it is to be noted that although literature on alternative and intuitively simpler 

derivations of Gini coefficient has grown exponentially over the years, any previous attempt 

to assimilate the idea of refraction of light with that of inequality based on Lorenz curve is 

not known. Popular survey papers by Xu (2004), and Yitzhaki and Schechtman (2013) do not 

reveal presence of any study on the approach under discussion. However, it is observed that 

after aggregation of the refractive indices for all the strata, the overall index becomes 

equivalent to a standardised measure that can be expressed as a ratio of length of the observed 

Lorenz curve to that in the ideal condition, as proposed by Amato (1968) and Kakwani 

(1980). This linkage between the measures based on the index of refraction and the length of 

the Lorenz curve puts the present research in advantageous position. This is obvious, as 

Kakwani (1980) discussed about transfer-sensitivity property and proved that unlike the Gini 

coefficient, the measure based on the length of the Lorenz curve is more sensitive to transfers 

at the lower levels of income, making it particularly applicable to problems such as 

measuring the intensity of poverty. Subramanian (2015, 2010) made it clear that the transfer-

neutral Gini coefficient is a linear convex combination of two measures which are anti 

transfer-sensitive and pro transfer-sensitive respectively. According to him, the pro transfer-

sensitivity of the latter is reminiscent of a similarly ‘left-wing’ inequality measure derived 
from the Lorenz curve, which is based on the length (rather than area, as in the case of the 

Gini coefficient) of the Lorenz curve, as advanced by Amato (1968), Kakwani (1980) as well 

as the one based on index of refraction as proposed by this author in Majumder (2014) and in 



the present paper
1
. Further, one may realise that the proposed measure goes beyond the 

above-mentioned conceptual advantages in its practical application, as it is: (i) applicable in 

parts (for each stratum or income groups) and as whole (for the whole Lorenz curve 

framework), (ii) additive (leading to the overall measure, which is related to the Gini 

coefficient or the one based on the length of the Lorenz curve), (iii) interpretable as per the 

scientific propositions of both economics and optics, and (iv) ornamentally comparable with 

the refractive indices of the precious gemstones, etc.     

 The paper is organised as follows. Section 2 derives the methods of computing refractive 

index for each stratum as well as the overall measure for the whole Lorenz curve framework. 

Section 3 presents refractive indices for some selected countries. Section 4 presents the 

overall measure of inequality (say, Optical Inequality Index or OI index) and explores its 

relationship with the Gini coefficient. Section 5 discusses transfer sensitive properties of the 

OI index. Section 6 presents conclusion followed by references.   

 

2. Methods of computing the index of refraction and the overall inequality measure 

2.1. Discrete case 

In geometrical optics, Snell's law of refraction (see Elert 2015, and Jenkins and White 1981) 

exhibits the relationship between different angles of light as it passes from one transparent 

medium into another as follows:  

  )(sin.i)(sin.i wwaa  ,                 (1) 

where ia is the refractive index of the medium a the light is leaving, θa is the angle of 

incidence, iw is the refractive index of the medium w the light is entering, and θw is the angle 

of refraction. An illustration of refraction (from air to water) is shown in figure 1. 

 

     Figure 1. An illustration of refraction (with vertical normal) 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

                                                 
1
 It is to be mentioned that Subramanian (2015) is in response to Majumder (2014).   
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 We may apply formula (1) to the Lorenz curve framework as demonstrated in figure 2 

(with standard concept and notations), where we have five different strata with yi as the 

proportion of income or consumption of one particular stratum such that ∑yi = 1 (for i = 1, 2, 

.., 5 or 1, 2, …, n in general). In that, an ideal condition is the one where light passes 
diagonally without refraction. As inequality exists, light refracts five times (as we have 

considered five different strata) while passing from one stratum into another. 

 

      Figure 2. Lorenz curve framework with five groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 From figure 2, we may check that there are five different triangles associated with five 

different strata.  Hypotenuses of all the triangles constitute the Lorenz curve. If we assume 

that light passes from the upward direction (from right to left), the perpendicular of a triangle 

is 0.20 (i.e., 1/n) and the base is yi. The hypotenuse of each triangle is:  
2

i

2 )y()20.0(  , and                  (2) 
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
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 The refractive index of the stratum where light enters may be computed with respect to 

that of the immediate preceding one or relative to that of the ideal condition, where θ = 45
0
 

with respect to the vertical normal. As the latter seems simple, we compute the index of 

refraction following the latter. The index of refraction of a particular stratum is [from 

equation (1)]:   
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 As in case of a fully transparent medium and / or in ideal condition the refractive index is 

1.00 (by assumption) and the angle of incidence (θa) is 45
0
,   
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20 
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 As yi and sin (45
0
) are known, index of refraction of each stratum can be obtained easily 

from expression (6). In general, as 0.20 = 1/n and if we denote the hypotenuse in the 

numerator [as in expression (2)] as h, 

  h.)45(sin.ni 0

w  .                   (7) 

 When yi = 0, iw ≈ 0.71 (as obtained from formula 6). When yi = 0.2 (the ideal condition), 

iw = 1.00. When yi = 1 (the extreme case), iw ≈ 3.61.   
 If we add all the refractive indices (for all the strata) under the Lorenz curve framework, 

we get the overall measure of economic inequality for the particular income distribution. As 

all the hypotenuses constitute the deviated or observed Lorenz curve (say, u), after 

summation (for i = 1, 2, …, 5 or 1, 2, …, n in general) of all the refractive indices we get: 
  u.)45(sin.ni 0 .                   (8a)  

 Equivalently, as for the whole triangle under the line of absolute equality, sin (45
0
) is 

nothing but the base of the triangle (perpendicular in true sense with respect to θ = 450
, whose 

length is 1.00) divided by the hypotenuse (the diagonal line, whose length is 2 ), 

 u.
2

n
i  .                            (8b) 

 Equivalently, as 2 = Lorenz curve in the ideal condition (say, v), 

 
v

u
.ni  .                          (8c) 

 One may check that expression in (8c) is equivalent to the measures proposed by Amato 

(1968) and Kakwani (1980).  

 The length of v in (8c) is: 211 22  . For n=5 and in the extreme case, when all 

resources are given to one group or individual, (in figure 2) the u takes an upward turn from 

point (0, 0.8). So, the maximum length of u (for n = 5)
2
 is: 22 )1()20.0(8.0  . As, in the 

ideal case v = u, for n=5, from equation (8c), 

  00.5imin  ;                     (9) 

and in the extreme case, from equation (8c),   

 43.6
2

 )1()20.0(8.0
.5i

22

max 


 .                      (10)  

 If we want results in a normalised 0-100 scale, the overall measure of economic 

inequality (which may be termed as Optical Inequality Index or OI index) may be defined as:   

 
minmax

min
o

ii

ii
.100I




 .                      (11) 

 Using formula (6) or (7) and formulae (8a) or (8b) or (8c) and (11) we will be able to 

compute (in discrete case) refractive and OI indices respectively for the data set under 

consideration or for the cases where number of groups or individuals is sufficiently large. 

 

                                                 
2
 The maximum length is 2 when n is sufficiently large. 



2.2. Continuous case 

Snell’s law of the form ‘i sin (θ) = constant’, as demonstrated above, is useful in studies when 

a ray of light passes through different media with refractive index being piece-wise constant 

for each of the medium. In continuous case, there are infinite numbers of infinitesimally 

narrow groups or stratum with continuously varying refractive index throughout the unit 

square. In such a case, the refractive index is to be computed using a differential form of 

Snell’s law (simply by differentiation of the above expression), as shown below.  

 .const)(sin.i                          (12) 

Differentiating the above, 

 0
d

di
.)(sin)(cos.i 


 ,                     (13) 

or, 






d

di
.

i

1

)(sin

)(cos
,                       (14)  

or, 
i

di
d)(cot  .                       (15) 

Expression (15) shows the differential form of Snell’s law when refraction is considered with 

respect to the vertical normal (Arovas 2008, and Tatum 2014). 

 Before I proceed further, I change the angular description to reap some mathematical 

advantages
3
, as shown in figure 3. It illustrates the case of refraction with respect to 

horizontal normal where, as per sign convention the angles are of opposite signs. With these, 

the Snell’s law takes the following form (Tatum 1999, and Blackstock 2000)
4, 5

: 

 .const)(cos.i                          (16) 

 Figure 3. An illustration of refraction (with horizontal normal) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differentiating the expression (16), 

  
i

di
d)(tan  .                       (17) 

                                                 
3
 Such as, to express the refractive index in terms of the slope of the tangent line to Lorenz curve. 

4
 Both the authors derived differential form of Snell’s law in the field of physical acoustics, where acoustic 

weave or ray of sound, as in case of light, obeys Snell’s law of geometrical optics.    
5
 One should take care that figures 5.1 and 5.2 in Arovas (2008) correspond to equation 16 and the derivation 

presented by him corresponds to the equation 12 as shown above (in the  present paper). 
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As i and θ are continuous functions of the coordinate x, expression (17) may be rewritten as 

follows:   

 
dx

di

i

1

dx

d
.)(tan 


 .                      (18)  

If we express the path as y = y (x), 

 y)(tan  , and                        (19)  

 ytan
dx

d 1   ,                       (20) 

   
2y1

y




 .                        (21) 

Replacing the results of (19) and (21) in (18), we have: 
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 or,  i.
y1

y
.yi

2


 .                            (23) 

 As the quantities in the right-hand side (with the first-order derivative being the slope of 

the tangent line to the Lorenz curve and i being the initial refractive index) are known, i or 

change in the refractive index due to the tiniest change in proportion of population (measured 

along x axis) can be known. 

 In continuous case, the overall measure of inequality (OI index), which is based on the 

length of the Lorenz curve, can be computed simply by replacing the summation used in case 

of equation (8a) by an integral.  

 Further, in continuous case, there is a point on the Lorenz curve where the slope of the 

tangent line is equal to that of the diagonal one. This is the point of inflection, as it divides 

the population into two groups with a refractive index of less than 1.00 in the left and more 

than 1.00 in the right. This concept may be used to derive a line of inequality in accordance 

with that of poverty.  

3. Refractive index for each stratum 

 

I utilise data on distribution of income or consumption from the WDI 2014 for 148 countries 

(as per completeness of information) and compute refractive index for each stratum using 

formula (6). Results of some countries (selected arbitrarily) are displayed in table 1
6
.  

 It is learnt that in the ideal condition refractive index is equal to 1.00 [as discussed in 

relation to formula (7)]. So, an index value of 1.00 is desirable for each of the strata. 

Deviation from 1.00 is undesirable. Any value less than 1.00 is strictly undesirable.  Standard 

literature in optics maintains that an index value of less than 1.00 does not represent a 

physically possible system (Nave 2012). Further, in case of light, a refractive index value of 

less than 1.00 represents an ‘anomalous refraction’ (Feynman 2011). However, the condition, 

which does not represent a physically possible system or which is considered ‘anomalous’ in 
physical science, appears to be true and too common for many of us in reality. For example, 

in table 1, we see that 60-80 % common mass in each country are subject to such an 

‘anomalous refraction’ and presumably a miserable condition of economic inequality too.  

 Refractive index with a value of more than 1.00 indicates higher concentration of wealth 

or income [with the upper limit being 3.61 in the extreme case, as discussed in relation to 

formula (7)]. However, the refractive index of the highest 20 % group in Namibia in 2010 is 

                                                 
6
 Results of all the 148 countries are presented in table 5 in Majumder (2014). 



2.44, which is close to that of Diamond (2.42)
7
. Similarly, the richest group in South Africa, 

in the same year, commands far more luxury as its refractive index (2.57) is seen to exceed 

that of Diamond. It is to be noted that in both the countries, 80 % of total population live in 

an ‘anomalous’ and miserable conditions of inequality.  
Table 1. Refractive Index of each stratum and OI index for some selected countries in 2014 

Country 
Year of 

survey 

Refractive index corresponding to each stratum 

OI index Lowest 

20% 

Second 

20% 

Third 

20% 

Fourth 

20% 

Highest 

20% 

China 2010 0.73 0.79 0.88 1.08 1.81 20 

India 2010 0.77 0.82 0.90 1.02 1.66 12.7 

Italy 2010 0.74 0.82 0.93 1.08 1.64 14.9 

Namibia 2010 0.72 0.74 0.78 0.91 2.44 39.9 

Slovenia 2011 0.79 0.88 0.95 1.07 1.41 7.2 

South Africa 2011 0.71 0.72 0.76 0.91 2.57 46.9 

Sweden 2005 0.79 0.86 0.95 1.07 1.45 7.9 
Source: Self-elaboration 

 Among other countries, the refractive index of the richest 20 % group in China (1.81) is 

close to that of Ruby (1.76)
8
 or Sapphire (1.76)

9
. The said index values of India (1.66) and 

Italy (1.64) are higher than that of Topaz (1.62)
10

, and those of Slovenia (1.41) and Sweden 

(1.45) are close to that of Opal (1.45)
11

.  Interpretation of results of economic inequality with 

the refractive indices of precious gemstones is simply ornamental and has no special 

scientific meaning. However, from this classification, one may beautifully relate extent of 

concentration of wealth among rich people with the gemstones in order of their hierarchy.  

 

4. Optical Inequality index and Gini coefficient 

 

Optical Inequality index (OI index) is computed using formula (8a) or (8b) or (8c) and (11). 

It is nothing but the summation of all the refractive indices of the five different income 

groups or strata expressed in a 0-100 point normalised scale. Index values are displayed in the 

final column of table 1. Interpretation of the OI index is similar to that of Gini coefficient.   

Table 2. The Summary and goodness of fit statistics of Quadratic models 

 Statistic Value Standard error F or t
*
 Sig. 

Model I 

(n=7) 

Adjusted R square 1.000 0.184 22123.973 0.000 

Constant 0.268 0.892 0.301 0.779 

Gini coefficient -0.009 0.047 -0.183 0.864 

Gini coefficient square
 

0.013 0.001 23.577 0.000 

Model II 

(n=148) 

Adjusted R square 1.000 0.150 235621.836 0.000 

Constant 1.499 0.222 6.738 0.000 

Gini coefficient -0.070 0.012 -6.009 0.000 

Gini coefficient square
 

0.014 0.000 96.970 0.000 
*
 F for adjusted R square, t for the constant and the coefficients 

Source: Self-elaboration 

 Gini coefficient and OI index are perfectly correlated by quadratic equation as shown in 

table 2 and in figures 4 and 5.  As, OI index is obtained from the grouped data on distribution 

                                                 
7
 There are several texts, which display refractive indices of common gemstones, such as Elert (2015), Jenkins 

and White (1981), and Reed (2015). 
8
 Ibid. 7. 

9
 Ibid. 8. 

10
 Ibid. 9. 

11
 Ibid. 10. 



of income or consumption, the relationship is explored after computing Gini coefficient from 

the same data following the standard measure under the mean difference approach
12, 13

.  

 

Figure 4. Gini coefficient vs. OI index (Model I, n =7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Gini coefficient vs. OI index (Model II, n = 148) 
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 Say, G3 in Anand (1983) after multiplying it by 100.   
13

 Gini coefficient is computed from grouped data and hence it shows lower values than those based on micro 

data.  
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 First, I estimate a model with the seven countries included in table 1 and then I repeat the 

exercise with the data of 148 countries as listed in table 5 in Majumder (2014). It is found, in 

both the models, that 100 % variability in the OI index is explained by the Gini coefficient 

with identical adjusted R square value of 1.00. The precise relationships as estimated in the 

models are shown in figures 4 and 5 respectively as above. 

 

5. Properties of Optical Inequality index 

 

As discussed previously (in the introductory section), OI index is a ‘left-wing’ or pro transfer 
sensitive inequality measure. It is also shown that the OI index is related to Gini coefficient 

by a quadratic equation. One may confirm that it possess all the desirable properties as the 

Gini coefficient does, which is transfer-neutral. Although, Gini coefficient satisfies the Pigou-

Dalton condition, it is not differentially sensitive to transfers at either the lower or the upper 

end of an income distribution.  

   

Figure 6. Lorenz curves with different skewness 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 I cite one simple numerical example to clarify the issue of sensitivity of OI index
14

. 

Consider the following distributions with five income groups: p = (7, 13, 20, 27, 33), q = (10, 

10, 20, 27, 33) and r = (7, 13, 20, 30, 30).  It can be seen that q has been derived from p by a 

downward transfer of 3 income units to the lowest 20 % from the second 20 %; and r has 

been derived from p by an identical transfer of 3 income units to the fourth 20 % from the 

highest 20 %. One may check that the areas enclosed by the Lorenz curves represented by q 

and r with the diagonal of the unit square are the same (and hence, Gini coefficients for the 

two are the same), although q is skewed towards (0,0) - ‘bulges at the top’; and r towards 

(1,1) - ‘bulges at the bottom’. Figure 6 represents such ideas more clearly. An inequality 

measure (say, Z), which satisfies the Pigou-Dalton transfer axiom, will be transfer-neutral if 

Z(p) > Z(q) = Z(r); and Z will be pro transfer-sensitive
15

 if Z(p) > Z(r) > Z(q). For the 

numerical example under review, and given equations (8a) or (8b) or (8c) and (11) (for OI 

                                                 
14

 In accordance with Subramanian (2015).  
15

 The third case is of anti transfer-sensitivity, which requires Z(p) > Z(q) > Z(r); a ‘right-wing’ inequality 
measure satisfies this condition. 

(0,1)                (1,1) 
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         q         
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index, Io) and any standard measure for Gini coefficient (G)
16

, it can be verified that G(p) [= 

26.4] > G(q) = G(r) [= 25.2]: the Gini coefficient is transfer-neutral; and Io(p) [= 10.1]  > Io(r) 

[= 9.9] > Io(q) [= 9.3]: OI index is pro transfer-sensitive.  

 Further, as the OI index is additive, it is confirmed that each component under different 

strata maintains the spirit of the Pigou-Dalton condition. For example, for the stratum where 

the index value is more than 1.00, in response to any positive transfer to it, index value 

increases indicating further escalation of inequality. On the other hand, for the stratum where 

the index value is less than 1.00, in response to any outward transfer from it, index value 

decreases aggravating the ‘anomalous’condition further and vice-versa.   

 Finally, I present a crude exercise to get an idea about how change in one refractive index 

(holding others constant) brings change in the OI index. The exercise is done by estimating 

Cobb-Douglas type function (for n = 148)
17

, results of which are presented in table 3.   

 It is prominent from the results that major diminution in inequality may come from the 

positive changes at the lower end.  

Table 3. The Summary and goodness of fit statistics of the Cobb-Douglas type function 

Statistic Value Standard error F or t
*
 Sig. 

Adjusted R square 0.999 0.016 20360.171 0.000 

Constant 0.202 0.029 6.858 0.000 

A -3.545 0.520 -6.816 0.000 

B -1.494 0.431 -3.470 0.001 

C 0.146 0.367 0.398 0.691 

D 0.649 0.303 2.138 0.034 

E 2.185 0.430 5.080 0.000 
*
 F for adjusted R square, t for the constant and the coefficients 

A, B, C, etc. denote natural logarithms of Refractive Indices (Iw) of various strata from the lower end.  

Source: Self-elaboration 

6. Conclusion 

 

The inherent objective of the paper has been to propose an alternative measure of economic 

inequality under the Lorenz curve framework, which could be far more lively and responsive 

to our senses as compared to Gini coefficient. Consequently, the overall workability of the 

proposed index, in parts and together with its sensibility favouring the worse-off ones has 

been tested and found satisfactory. Further, amalgamation of the principles and propositions 

of physical and economic sciences together, makes a ground for all of us to envisage about a 

world without anomalous condition of economic inequality. Being overly simple but 

contented, the proposed measure of economic inequality based on the index of refraction of 

light could be a good substitute of the said Gini coefficient and similar ones. 

 

                                                 
16

 Ibid. 12. 
17

 As displayed in table 5 in Majumder (2014). 
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