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Abstract
In this paper we analyze the predictive power of the yield curve on output growth using a vector autoregressive model

with multiple structural breaks in the intercept term and the volatility. To estimate the model and to detect the number

of breaks, we apply a Bayesian approach with Markov chain Monte Carlo algorithm. We find strong evidence of three

structural breaks using the US data.
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1 Introduction

This paper considers a vector autoregressive (VAR) model with multiple structural

breaks to analyse the US predictive power of the yield curve on output growth, using

a Bayesian approach with Markov chain Monte Carlo simulation technique. To detect

multiple structural breaks in the VAR model, we extend Wang and Zivot’s (2000)

Bayesian method for univariate models.

To determine the number of breaks, we compute the marginal likelihood to calcu-

late the Bayes factors using the algorithm developed by Chib (1995). To use Chib’s

method to compute the marginal likelihood, all priors must be proper and thus we use

an independent Normal-Wishart prior to estimate the models.

2 Predictive Power of the Yield Curve

The predictive relationships between the slope of the yield curve and subsequent in-

flation or real output have been extensively studied. The consumption capital asset

pricing model (CCAPM) with habit formation by Campbell and Cochrane (1999)

shows that the term structure is related to the future economic activity - positive

slopes of the real term structure precede economic expansion and negative slopes

precede economic recession. Mishikin (1990), based on the Fisher decomposition,

finds that the yield curve can predict inflation. Although Chen (1991), Estrella and

Hardouvellis (1991) and other studies find a positive correlation between the yield

curve slopes and future real economic activities, Estrella et al (2003) suggest veri-

fying the stability of the relationship because the predictive power may depend on

factors that may change over time such as monetary policy reaction function, real

productivity, or monetary shocks.

Estrella et al (2003) investigate the instability of the predictive power based on

the following model:

ipq,t = β0 +β1spt + εt (1)

where εt ∼ iidN(0,σ2); spt is the spread between the two interest rates of bonds with

different maturity; and ipq,t is the future growth rate of industrial production, IPt , at a

forecast horizon q and is defined as ipq,t ≡ (1200/q)ln(IPt+q/IPt). We consider the

forecast horizon of one year, that is, q = 12, as Estrella et al (2003) show that the

predictive power of the spread on industrial production is maximum at q = 12.

Instead of the linear single equation model given in (1), where future growth

rate of industrial production is treated as the endogenous variable, we consider VAR

models with p lag terms as:

Xt = µ+
p

∑
i=1

Xt−iΦi + εt (2)

where t = 1,2, . . . ,T , Xt = (spt , ipq,t), and εt ∼ iidN(0,Ω). Dimensions of matrices

are µ and εt (1×2), Φi and Ω (2×2). If we assume that the parameters µ and Ω are

subject to m < T structural breaks with break dates k1,k2, . . . ,km, 1 < k1 < k2 < · · ·<
km < T so that the observations can be divided into m+ 1 regimes, then the VAR

model with multiple structural breaks can be written as follows:

Xt = µt +
p

∑
i=1

Xt−iΦi + εt (3)



where εt ∼ N(0,Ωt). For each regime i, the parameters µt and Ωt are given by µt = µi

and Ωt = Ωi for ki−1 ≤ t < ki with k0 = 1 and km+1 = T .
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with Multiple Structural Breaks

Equation (3) can be rewritten as:

Xt = xtB+ εt (4)

where xt =(s1,t , . . . ,sm+1,t ,Xt−1, . . . ,Xt−p) is 1×(m+1+2p) , B=(µ′1, . . . ,µ
′
m+1,Φ

′
1, . . . ,Φ

′
p)

′

is (m+1+2p)×2, and si,t in xt is an indicator variable which equals to 1 if regime

is i and 0 otherwise.

From equation (4), let define the T × 2 matrices Y = (X ′
1, . . . ,X

′
T )

′ and E =
(ε′1, . . . ,ε

′
T ) , and the T × (m+ 1+ 2p) matrix X = (x′1, . . . ,x

′
T )

′, then we can sim-

plify the model as follows:

Y = XB+E (5)

To estimate the regression given in (5), first we specify priors for parameters, as-

suming prior independence between k = (k1,k2, . . . ,km)
′, B and Ωi, i = 1,2, . . . ,m+1,

such that p(k,B,Ω1,Ω2, . . . ,Ωm+1) = p(k) p(vec(B))∏m+1
i=1 p(Ωi). We consider that

all priors for k, Ωi, and vec(B) are proper as p(b)∼U(p+1,T −1), Ωi ∼ IW (ψ0,i,ν0,i),
vec(B) ∼ MN (vec(B0) ,V0) where U refers to a uniform distribution; IW refers to

an inverted Wishart distribution with parameters ψ0,i ∈R
2×2 and degrees of freedom,

ν0,i; MN refers to a multivariate normal with mean vec(B0) ∈R
2κ×1, κ = m+1+2p

and covariance-variance matrix V0 ∈ R
2κ×2κ.

Consider first the conditional posterior of ki, i = 1,2, . . . ,m. Wang and Zivot

(2000) show that for ki ∈ [ki−1,ki+1]

p(ki | [k− ki],B,Ω1, . . . ,Ωm+1,Y ) ∝ p(ki | ki−1,ki+1,B,Ωi,Ωi+1,Yi) (6)

for i= 1, . . .m, which is proportional to the likelihood function evaluated with a break

at ki only using data between ki−1 and ki+1 and probabilities proportional to the like-

lihood function. Hence, ki can be drawn from multinomial distribution as

ki ∼ M (ki+1 − ki−1, pL) (7)

where pL is a vector of probabilities proportional to the likelihood functions.

Next, we consider the conditional posterior of Ωi, and vec(B). The conditional

posterior of Ωi is derived as an inverted Wishart distribution as Ωi | b,B,Y ∼ IW (Ψi,⋆,ν⋆,i)
where Ψi,⋆ =(Yi −XiB)

′ (Yi −XiB)+ψ0,i and ν⋆,i = ti+ν0,i. The conditional posterior

of vec(B) is a multivariate normal density with covariance-variance matrix, VB, that

is, vec(B) | k,Ω1, . . . ,Ωm+1,Y ∼MN(vec(B⋆),VB) where VB =
[
V−1

0 +∑m+1
i=1

{
Ω−1

i ⊗ (X ′
i Xi)

}]−1

and vec(B⋆) = VB

[
V−1

0 vec(B0)+∑m+1
i=1

{
(Ωi ⊗ Iκ)

−1
vec(X ′

i Yi)
}]

. With these full

set of conditional posteriors, we can draw k, vec(B), and Ωi by the Gibbs sampler.

The algorithm for generating k is provided by Wang and Zivot (2000). See Sugita

(2008) for more detail for a Bayesian approach to a vector autoregressive model with

multiple structural breaks.

We consider detecting for the number of structural breaks as a problem of model

selection. First, we compute the marginal likelihood for each model to obtain the



Bayes factor. Chib (1995) provides a method of computing the marginal likelihood

that utilizes the output of the Gibbs sampler. The marginal likelihood for the model

i, p(Y | Mi), can be expressed from the Bayes rule as

p(Y | Mi) =
p(Y | θ⋆

i )p(θ⋆
i )

p(θ⋆
i | Y )

(8)

where p(Y | θ⋆
i ) is the likelihood for Model i evaluated at θ⋆

i , which is the Gibbs

output or the posterior mean of θi, p(θ⋆
i ) is the prior density and p(θ⋆

i | Y ) is the

posterior density. If the exact forms of the marginal posteriors are not known like

our case, p(θ⋆
i | Y ) cannot be calculated. To estimate the marginal posterior density

evaluated at θ⋆
i using the conditional posteriors, first block θ into l segments as θ =

(θ′
1, . . . ,θ

′
l)
′, and define ϕi−1 = (θ′

1, . . . ,θ
′
i−1) and ϕi+1 = (θ′

i+1, . . . ,θ
′
l). Since p(θ⋆ |

Y ) = ∏l
i=1 p(θ⋆

i | Y,ϕ⋆
i−1), we can draw θ

( j)
i , ϕi+1,( j), where j indicates the Gibbs

output j = 1, . . . ,N, from (θi, . . . ,θl) = (θi,ϕ
i+1) ∼ p(θi,ϕ

i+1 | Y,ϕ⋆
i−1), and then

estimate p̂(θ⋆
i | Y,ϕ⋆

i−1) as

p̂(θ⋆
i | y,ϕ⋆

i−1) =
1

N

N

∑
j=1

p(θ⋆
i | Y,ϕ⋆

i−1,ϕ
i+1,( j)).

Thus, the posterior p(θ⋆
i | Y ) can be estimated as

p̂(θ⋆ | Y ) =
l

∏
i=1

{
1

N

N

∑
j=1

p(θ⋆
i | Y,ϕ⋆

i−1,ϕ
i+1,( j))

}
. (9)

With the marginal likelihood for each model, model selection for Mi and M j

means computing the Bayes Factors, BFi j, defined as the ratio of marginal likelihood,

p(Y | Mi) and p(Y | M j).

4 Estimation Results

We use a VAR model with structural breaks in the intercept term µ and the volatility Ω

described in (3) to analyze the predictive power of the yield curve on output growth.

The data for this model are, IPt , the US industrial production, rl,t , 10-year US treasury

rate as a long-term interest rate, and rs,t , the Federal fund rate as a short-term interest

rate, based on monthly data obtained from the Saint Louis Federal Reserve Bank. The

sample ranges from 1970:01 to 2007:11 with 454 observations. The two variables,

spt ≡ rl,t − rs,t and ip12,t ≡ 100ln(IPt+12/IPt), are plotted in Figure 1. For prior

parameters, we set Ψ0,i = 0.1I2 and ν0,i = 2.0011 for all i for the variance-covariance

prior, B0 = 0 and V0 = 100× Inκ to ensure fairly large variance for representing prior

ignorance. The Gibbs sampling is performed with 10,000 draws and the first 1,000

discarded for the VAR models with the number of structural breaks m = 0,1, . . . ,4
and the lags p = 3,4 and 5.

Table 1 reports the Gibbs sampling results of model selection for the number of

structural breaks, m, and the lag, p. A VAR model with m = 3 and p = 4 results in

the highest posterior model probability with 93.15%. Clearly, a VAR model with no

break (m = 0) is rejected with nearly zero percent of the posterior model probability.

The estimates of the break points and other parameters of the VAR model with

m = 3 and p = 4 are presented in Table 2. The posterior mass of each break date

is plotted in Figure 2. The first break point is detected in the 95% HPDI (Highest

1I tried the different sets of the prior values, and found that the posterior results are barely affected

by these values.



Posterior Density Interval) between 1973:09 and 1975:07 with the posterior mode

1974:07. After the first break the variance of the interest rate spread decreased sig-

nificantly and the productivity growth changed due to the first oil shock. The second

break point is detected in the 95% HPDI between 1977:10 and 1979:10 with the pos-

terior mode 1978:11. This second break date is associated with the advent of Fed

Chairman Volcker in October 1979, initiating some fundamental changes until Octo-

ber 1982. However, the HPDI of the second date merely covers the assumed break

date, October 1979, in the tail. The variance-covariance matrix of the regime between

the second and third break dates, Ω3, is much larger than that of the previous regime,

Ω2. The third estimated break date is found between 1982:09 and 1983:03 with the

posterior mode 1983:01. This third break date is associated with the completion of

the Volcker’s monetary policies of the period with the non-borrowed reserves operat-

ing procedure, while the estimated mode of the third date is not exactly matched with

the assumed date but the HPDI merely covers the assumed date in the tail. After the

third break date the variance of both the spread and the industrial productivity growth

was much reduced as shown in Ω4.

5 Conclusion

In this paper we analyse the predictive power of the yield curve on industrial produc-

tivity growth using a Bayesian bivariate VAR model with multiple structural breaks,

applying a method by Wang and Zivot (2000) to detect the number of breaks and

Chib (1995) method to compute the marginal likelihood.

We considered a model with multiple structural breaks in the intercept terms and

the variance-covariance matrix. We computed the marginal likelihood for various

models with different number of breaks and lags, and found that there is a strong

evidence of three structural breaks using the US data. Two of these breaks are corre-

sponding with change of the US monetary policy. Therefore, the predictive power is

affected by these policy changes.
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Table 1: Model selection
p\m m = 0 m = 1 m = 2 m = 3 m = 4

p = 3 0.0000 0.0000 0.0000 0.0002 0.0000

p = 4 0.0000 0.0000 0.0000 0.9315 0.0120

p = 5 0.0000 0.0000 0.0000 0.0344 0.0219
Note: Each element shows the posterior probability in () using Chib’s (1995) method.

p: the number of the lag in a VAR

m: the number of the structural breaks

Table 2: Posterior results

(): standard deviation

(a) Estimates of Break Points

Posterior Mode 95% HPDI

1st break 1974:07 (0.5580) 1973:09, 1975:07

2nd break 1978:11 (0.5602) 1977:10, 1979:10

3rd break 1983:01 (0.1637) 1982:09, 1983:03

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters sp ip Parameters sp ip

µ1 -0.0123 (0.0170) 0.1283 (0.0573) sp(−2) -0.2612 (0.0228) 0.0212 (0.0217)

µ2 0.0543 (0.0302) 0.2197 (0.0748) ip(−2) 0.0590 (0.0081) 0.0762 (0.0221)

µ3 -0.0488 (0.0952) 0.0823 (0.0442) sp(−3) 0.0410 (0.0272) -0.1705 (0.0213)

µ4 0.0773 (0.0071) 0.1058 (0.l0133) ip(−3) 0.0113 (0.0067) 0.0129 (0.0114)

sp(−1) 1.1967 (0.0131) 0.0675 (0.0119) sp(−4) -0.0292 (0.0157) 0.1290 (0.0133)

ip(−1) 0.0049 (0.0071) 1.0700 (0.0163) ip(−4) -0.0718 (0.0049) -0.2303 (0.0075)

Ω1 =




0.1928 0.0322

(0.0424) (0.0221)
0.0322 1.2628

(0.0221) (0.2661)


, Ω2 =




0.0916 0.0599

(0.0375) (0.0210)
0.0599 0.9991

(0.0210) (0.2195)


,

Ω3 =




2.0566 0.4891

(0.5271) (0.1277)
0.4891 1.3336

(0.1277) (0.2728)


, Ω4 =




0.0822 −0.0057

(0.0073) (0.0017)
−0.0057 0.4911

(0.0017) (0.0455)






Figure 1: The interest rates spread (solod line) and the US industrial production

growth rate (dotted line)
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Figure 2: Posterior probability mass of the break dates
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