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Abstract
In the Markov-switching framework, I study the effects of nuisance parameters such as the correlation and transition

probability on the power of a recently proposed nonparametric test of asymmetric tail comovement (Li, 2014). As

nuisance parameters govern how different states are separated apart and how they interact with each other, it is found

that substantial power loss can be incurred when the underlying parameters take certain values. In addition, I show

that the power of the test is sensitive to the choice of tail threshold and is adversely affected as one goes into deeper

tails.
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1. Introduction 

A growing body of empirical research has found asymmetric comovements of portfolio returns, 

e.g., Ang and Chen (2002) and Hong, Tu, and Zhu (2007).  The test statistics used by these 

authors are mostly based on Pearson’s correlation coefficient, the limitations of which are now 

well understood, i.e., while it is a proper measure when the underlying assets are jointly normally 

distributed, it does not capture nonlinear dependence that otherwise may be present in the data. 

Recently Li (2014) proposes a new approach to measure the pairwise comovement between two 

asset returns. The new framework gives a probabilistic interpretation to the notion of tail 

comovement and involves the choice of a tail threshold parameter. The test statistic is based on 

the difference between the probability that the two returns simultaneously move up or down 

(concordant movements) and the probability that they move up or down in opposite directions 

(discordant movements). The test does not impose any restrictions on the functional form of the 

joint distribution of the two returns—which is convenient for practitioners—but, as is shown in 

Section 2, the price to pay is that the power of the test is sensitive to the model parameters which 

are not explicitly modeled.  

 

Against this background, the main purpose of this note is to highlight the danger of using model-

free test of asymmetric tail comovement in finite samples while power of the test might have 

drifted away to a very low level. Since the Gaussian Markov-switching model has served as a 

benchmark for characterizing asset returns in many applications, the performance of the test in 

this context is of particular interest. Another benefit of using this model is that, by varying the 

model parameters (mean return, volatility, correlation, transition probability), the regime-

switching structure is able to generate a continuum of economically sensible (local) alternatives 

which can be then used to evaluate the power of the test. In fact, exact moments can be computed 

for such models (Timmermann, 2000) and it is straightforward although tedious to show that 

asymmetric tail comovement is an inherent property of Markov-switching models (this seems to 

be a somewhat overlooked aspect) unless, say, the state-dependent distributions are exactly 

symmetric about the zero mean, which, from a practical perspective, is hardly possible to find in 

empirical studies. The same logic applies to other more complicated models with a Markov-

switching component.  

 

 

2. Simulation Results 

2.1   Summary of the Test Procedure 

Li’s test is based on a pair of upside and downside comovement measures: 

 

 ܿ݉ାሺܿሻ ൌ ʹܲ൫ሺܴ௧ାଵଵ െ ܴ௧ଵሻሺܴ௧ାଵଶ െ ܴ௧ଶሻ ൐ Ͳ|ܴ௧ଵ ൐ ܿ, ܴ௧ଶ ൐ ܿ൯ െ ͳ, (1)

and 

 

 ܿ݉ିሺܿሻ ൌ ʹܲ൫ሺܴ௧ାଵଵ െ ܴ௧ଵሻሺܴ௧ାଵଶ െ ܴ௧ଶሻ ൐ Ͳ|ܴ௧ଵ ൏ െܿ, ܴ௧ଶ ൏ െܿ൯ െ ͳ. (2)

In Eq. (1) and (2), ܲ is the usual probability measure, ܴଵ and ܴଶ are returns of the two assets, 

and ܿ  is some non-negative threshold in percentage points. Accordingly ܿ݉ା  measures the 



strength of upside (right tail) comovement and ܿ݉ି measures the strength of downside (left tail) 

comovement. By construction, the new measure can be viewed as a conditional version of 

Kendall’s ߬ and is a summary of both linear and nonlinear dependence. For a given threshold ܿ, 

the null and alternative hypotheses can be stated as 

 H଴: ܿ݉ାሺܿሻ ൌ cmିሺܿሻ, Hଵ:	ܿ݉ାሺܿሻ ് cmିሺܿሻ.	 
For multiple thresholds, a joint test can be constructed so that ܿ݉ା ൌ ሺܿ݉ାሺܿଵሻ, … , ܿ݉ାሺܿ௠ሻሻ. ܿ݉ାሺܿሻ and ܿ݉ିሺܿሻ can be easily estimated nonparametrically using the procedure given in Li 

(2014):  

 ܿෞ݉ ାሺܿሻ ൌ ∑ ܵሺܴ௧ଵ, ܴ௧ାଵଵ , ܴ௧ଶ, ܴ௧ାଵଶ ሻܫሺܴ௧ଵ ൐ ܿ, ܴ௧ଶ ൐ ܿሻ௡ିଵ௧ୀଵ ∑ ሺܴ௧ଵܫ ൐ ܿ, ܴ௧ଶ ൐ ܿሻ௡ିଵ௧ୀଵ , 
 ܿෞ݉ ିሺܿሻ ൌ ∑ ܵሺܴ௧ଵ, ܴ௧ାଵଵ , ܴ௧ଶ, ܴ௧ାଵଶ ሻܫሺܴ௧ଵ ൏ െܿ, ܴ௧ଶ ൏ െܿሻ௡ିଵ௧ୀଵ ∑ ሺܴ௧ଵܫ ൏ െܿ, ܴ௧ଶ ൏ െܿሻ௡ିଵ௧ୀଵ , 
 

where ܫሺܴ௧ଵ ൏ െܿ, ܴ௧ଶ ൏ െܿሻ and ܫሺܴ௧ଵ ൐ ܿ, ܴ௧ଶ ൐ ܿሻ are indicator functions that define the tail 

events and  ܵሺܴ௧ଵ, ܴ௧ାଵଵ , ܴ௧ଶ, ܴ௧ାଵଶ ሻ ൌ ሾሺܴ௧ାଵଶܫ െ ܴ௧ଶሻሺܴ௧ାଵଵ െ ܴ௧ଵሻ ൐ Ͳሿ െ ሾሺܴ௧ାଵଶܫ െ ܴ௧ଶሻሺܴ௧ାଵଵ െܴ௧ଵሻ ൏ Ͳሿ. 
 

Under certain assumptions, Theorem 2 of Li (2014) shows that  

 

 ݊ሺܿ݉ା െ ܿ݉ିሻΩ෡ሺܿ݉ା െ ܿ݉ିሻ ௗ→ ߯௠ଶ , (3)

where Ω෡ is a consistent estimate of the variance-covariance matrix based on the Bartlett-kernel, 

and ݊ and ݉ are, respectively,  the number of observations and thresholds. Standard assumptions 

(e.g., symmetry and relative convergence rate of the nonstochastic bandwidth) on the kernel 

function used to estimate Ω෡  are imposed, so that many commonly used kernels, such as the 

Bartlett, Parzen, and quadratic-spectral kernels are included. Details are omitted in the interest of 

brevity. In the next subsection, I focus on the two state single threshold case and choose ݉ to be 

one. Under the null the test statistic converges to χଶሺͳሻ.  
 

2.2   Power Attrition 

Here I illustrate how the power of Li’s test varies with model parameters in a regime-switching 

setup. I adopt the same parameterization (DGP 5 in Li (2014)) as in the bivariate Gaussian 

Markov-switching model of Ang and Bekaert (2002):  
 

 ܴ௧ ൌ μௌ೟ ൅ Σௌ೟ଵ ଶ⁄ ௧. (4)ߝ

In Eq. (4), the transition probability matrix is Γ ൌ ሾͲ.ͻͺͳͺ, Ͳ.Ͳͳͺʹ; Ͳ.ͳͶͷͶ, Ͳ.ͺͷͶ͸ሿ ଵߤ , ൌሺͳ.ʹͺ͵,ͳ.͵ͲͶሻ, ߤଶ ൌ ሺെͳ.ʹͺͺ,െͲ.͸ͻʹሻ; the elements of Σௌ೟ଵ ଶ⁄
 are ߩଵ ൌ Ͳ.ͶͶͷͷ, ߩଶ ൌ Ͳ.͸Ͳͻ͹, ߪଵ ൌ ሺ͵.͹͸ͺͻ	, ͷ.ʹͳͻͶሻ, ߪଶ ൌ ሺ͹.Ͳ͵͹͸	, ͳ͵.͹ͳ͹͹ሻ. ߝ௧ is i.i.d. normal. Subscript 1 and 2 denote 

the low volatility and high volatility state. Power is computed based on 1000 simulated samples 



and the initial state distribution is assumed to be ሺͲ.ͷ, Ͳ.ͷሻ the latter of which is not made clear in 

Li (2014). The HAC estimators used to estimate the variance (as in Eq. (3)) are the kernel-HAC, 

VARHAC, prewhitened HAC and KVB-HAC and I use the Bartlett kernel throughout. Results 

are collected in Tables 1-3. The first row of each subpanel makes use of the benchmark 

specification of the transition probability matrix and mean returns given above. Each table 

corresponds to one of the three thresholds (ܿ ൌ Ͳ, Ͳ.ͷ, ͳ).  

  

 
 

Four observations can be made. First, the power of the test decreases in all cases as the threshold 

gets larger. It is highest when ܿ ൌ Ͳ which is not really a “tail” event. Second, power also 

depends on the degree to which the correlation coefficients are distinct from each other. In 

general the more separated apart they are, the higher the power. Third, for reasonable choices of 

the mean return of the low return-high volatility state (ߤ୪୭୵ ൌ െͳ,െͲ.ͷ, Ͳ), power tends to be 

least affected especially when the sample size grows larger (൒ ͳͲͲͲ)—this is good news. 

Finally, the transition probability matrix has the most salient influence on the performance of the 

test (0.3 ,0.2 ,0.1 = ܾ݋ݎ݌). Since this matrix determines the average time the process spends in 

each state—or duration—the larger the off-diagonal probabilities, the more “mixed-up” the states 

Table 1

VHAC pre-HAC ker-HAC KVB VHAC pre-HAC ker-HAC KVB

T=250 0.259 0.277 0.262 0.167 0.187 0.198 0.18 0.142

prob =0.1 0.124 0.131 0.12 0.082 0.094 0.111 0.101 0.086

prob =0.2 0.144 0.158 0.139 0.128 0.113 0.115 0.108 0.08

prob =0.3 0.159 0.173 0.167 0.124 0.106 0.117 0.111 0.075

μ low =-1.0 0.227 0.246 0.238 0.166 0.176 0.191 0.178 0.142

μ low =-0.5 0.218 0.24 0.226 0.156 0.19 0.192 0.179 0.128

μ low =0.0 0.231 0.244 0.228 0.166 0.172 0.189 0.174 0.127

T=500 0.406 0.412 0.393 0.287 0.339 0.347 0.345 0.247

prob =0.1 0.211 0.213 0.206 0.144 0.126 0.127 0.119 0.097

prob =0.2 0.203 0.213 0.203 0.169 0.158 0.163 0.158 0.123

prob =0.3 0.26 0.264 0.251 0.193 0.154 0.165 0.156 0.119

μ low =-1.0 0.382 0.396 0.386 0.27 0.314 0.328 0.316 0.24

μ low =-0.5 0.408 0.418 0.41 0.294 0.343 0.352 0.341 0.258

μ low =0.0 0.385 0.395 0.389 0.303 0.345 0.358 0.353 0.282

T=1000 0.677 0.682 0.674 0.486 0.561 0.566 0.559 0.386

prob =0.1 0.363 0.369 0.354 0.266 0.21 0.215 0.208 0.161

prob =0.2 0.43 0.439 0.429 0.327 0.237 0.245 0.235 0.183

prob =0.3 0.444 0.452 0.442 0.336 0.305 0.317 0.302 0.225

μ low =-1.0 0.683 0.679 0.669 0.491 0.557 0.561 0.547 0.39

μ low =-0.5 0.674 0.679 0.676 0.485 0.572 0.588 0.569 0.43

μ low =0.0 0.695 0.695 0.683 0.519 0.564 0.578 0.577 0.395

Power attrition of Li's test, tail threshold c =0,  H0: symmetric tail dependence.

corr  = [0.3, 0.7] corr = [0.4455, 0.6097]

Note: μ low sets the low return-high volatility state mean return to -1.0, -0.5 and 0.0. prob sets the off-

diagonal entries of the transition probability matrix to 0.1, 0.2 and 0.3. The test examines whether 

comovement in the upper tail is the same as comovement in the lower tail and is given in Li (2014). 

When one-sided hypothesis is tested, i.e., right tail comovement is higher than left tail comovement, 

power is higher by about 0.09-0.15 in all cases.



are. In an unreported exercise, power is lowest when all entries of the two-by-two transition 

probability matrix take the value of 0.5 (unrealistic though). It is tempting to conjecture that each 

one of these effects can be gauged independently of the others but they are actually highly 

interconnected whenever the DGP has a regime-switching structure.  

 

 

To fix ideas, suppose the low volatility state has a lower correlation and positive mean return and 

the conditioning tail threshold is zero. If the low correlation state is more persistent than the high 

volatility (with higher correlation) state, then, ceteris paribus, this will necessarily make upper 

tail dependence less significant simply because the low volatility-low correlation state has a 

positive mean which makes ܿ݉ା	 smaller. Increasing the threshold or assuming less persistent 

states only blurs the difference between  ܿ݉ା and ܿ݉ି. The latter tendency is reinforced when 

the correlation differential across the two states gets smaller. Moreover, state-dependent mean 

returns also matter. Imagine the low correlation state has a mean return of 1% compared to -0.5% 

in the high correlation state, then conditional on a positive threshold return, the test will place 

more weight on the low correlation state. In general, a nonparametric tail comovement measure 

is inevitably influenced by the magnitude of correlations, how often the process hits the high 

correlation state, and how the mean return of each state compares with the tail threshold. 

 

 
 

 

Table 2

VHAC pre-HAC ker-HAC KVB VHAC pre-HAC ker-HAC KVB

T=250 0.185 0.2 0.193 0.128 0.169 0.176 0.17 0.122

prob =0.1 0.103 0.119 0.108 0.103 0.087 0.098 0.097 0.062

prob =0.2 0.134 0.151 0.14 0.108 0.093 0.101 0.096 0.088

prob =0.3 0.128 0.14 0.129 0.106 0.087 0.102 0.098 0.071

μ low =-1.0 0.186 0.203 0.193 0.142 0.167 0.182 0.16 0.122

μ low =-0.5 0.206 0.232 0.215 0.172 0.188 0.196 0.182 0.137

μ low =0.0 0.196 0.211 0.201 0.145 0.183 0.2 0.184 0.126

T=500 0.385 0.395 0.383 0.259 0.288 0.301 0.291 0.206

prob =0.1 0.213 0.218 0.199 0.153 0.116 0.119 0.115 0.093

prob =0.2 0.19 0.198 0.189 0.139 0.158 0.167 0.159 0.127

prob =0.3 0.22 0.232 0.216 0.153 0.133 0.141 0.124 0.11

μ low =-1.0 0.381 0.386 0.378 0.251 0.286 0.299 0.286 0.186

μ low =-0.5 0.403 0.411 0.401 0.276 0.315 0.336 0.326 0.219

μ low =0.0 0.368 0.379 0.372 0.27 0.336 0.342 0.333 0.251

T=1000 0.642 0.648 0.646 0.453 0.547 0.549 0.531 0.377

prob =0.1 0.317 0.324 0.307 0.233 0.182 0.184 0.178 0.142

prob =0.2 0.359 0.367 0.358 0.256 0.203 0.209 0.198 0.157

prob =0.3 0.385 0.395 0.378 0.29 0.272 0.28 0.264 0.19

μ low =-1.0 0.652 0.659 0.647 0.472 0.561 0.561 0.546 0.392

μ low =-0.5 0.658 0.663 0.654 0.46 0.568 0.572 0.561 0.402

μ low =0.0 0.65 0.652 0.643 0.464 0.585 0.596 0.577 0.38

Power attrition of Li's test, tail threshold c =0.5,  H0: symmetric tail dependence.

corr  = [0.3, 0.7] corr = [0.4455, 0.6097]

Note: Same as Table 1. 



 

 
 

2.3   Empirical Illustration 

To see how the power of the test depends on the choice of tail threshold in a real world example, 

I conduct a small scale empirical exercise using daily adjusted returns from the CRSP database. 

In particular, I apply Li’s test of asymmetric tail comovement to the four largest components of 

DJIA 30 and four market indices. The market indices are chosen for the financially highly 

integrated economies with a significant weight in the world index since the late 1990s, namely, 

S&P 500 (U.S.), FTSE 100 (U.K.), DAX 30 (Germany) and Nikkei 225 (Japan); see Lane and 

Milesi-Ferretti (2003). From the previous subsection, for mildly large samples the difference 

between ker-HAC and prewhitened HAC vanishes, so I only report ݌ -values based on the 

standard ker-HAC. 

 

In Table 4, (marginally) significant pairs are in boldface and a positive (negative) test statistic 

corresponds to larger upper (lower) tail dependence. First note that lower tail dependence is not 

always stronger and many are insignificant. (For the DJIA sample, the sign can be even reversed 

when one goes from ܿ ൌ Ͳ to ܿ ൌ ͳ.) The result also depends on which tail threshold is being 

used and hence needs to be evaluated case-by-case. For the large caps, because of their low 

overall volatility, returns tend to be more concentrated about a small positive mean which limits 

the number of effective observations exceeding the threshold.  

Table 3

VHAC pre-HAC ker-HAC KVB VHAC pre-HAC ker-HAC KVB

T=250 0.198 0.208 0.196 0.125 0.147 0.157 0.147 0.113

prob =0.1 0.09 0.1 0.091 0.075 0.057 0.064 0.058 0.046

prob =0.2 0.115 0.121 0.11 0.071 0.074 0.081 0.079 0.058

prob =0.3 0.094 0.106 0.098 0.088 0.097 0.107 0.099 0.082

μ low =-1.0 0.176 0.189 0.172 0.114 0.144 0.156 0.146 0.106

μ low =-0.5 0.164 0.182 0.17 0.121 0.13 0.141 0.134 0.094

μ low =0.0 0.172 0.187 0.178 0.131 0.149 0.163 0.159 0.114

T=500 0.33 0.343 0.33 0.237 0.252 0.259 0.255 0.208

prob =0.1 0.148 0.159 0.148 0.122 0.104 0.108 0.105 0.075

prob =0.2 0.169 0.166 0.156 0.117 0.105 0.106 0.102 0.088

prob =0.3 0.195 0.204 0.186 0.132 0.119 0.126 0.122 0.087

μ low =-1.0 0.336 0.339 0.331 0.224 0.268 0.27 0.26 0.19

μ low =-0.5 0.331 0.347 0.323 0.217 0.286 0.292 0.278 0.205

μ low =0.0 0.335 0.342 0.338 0.227 0.268 0.285 0.271 0.176

T=1000 0.594 0.597 0.586 0.421 0.484 0.481 0.466 0.338

prob =0.1 0.259 0.269 0.252 0.189 0.115 0.115 0.104 0.104

prob =0.2 0.3 0.304 0.288 0.234 0.175 0.184 0.177 0.123

prob =0.3 0.345 0.353 0.339 0.245 0.197 0.205 0.196 0.159

μ low =-1.0 0.591 0.591 0.59 0.382 0.465 0.476 0.469 0.314

μ low =-0.5 0.598 0.598 0.589 0.429 0.522 0.526 0.51 0.345

μ low =0.0 0.62 0.627 0.62 0.448 0.509 0.521 0.513 0.364

Note: Same as Table 1.

Power attrition of Li's test, tail threshold c =1,  H0: symmetric tail dependence.

corr  = [0.3, 0.7] corr = [0.4455, 0.6097]



 
 

Since the test is conservative, when it does reject, it is strong evidence that asymmetric tail 

comovement is present. When the null is not rejected, a natural question to ask is how to avoid 

overinterpreting the test result. Based on the above findings, one possible solution is to fit the 

data first according to some benchmark model and evaluate the estimated parameters or conduct 

a simple bootstrap experiment. Another solution is to rephrase the hypothesis testing question 

and view the ݌-value as a continuous reflection of the strength of comovement asymmetry rather 

than a yes/no answer.  

 

 

3. Concluding Remarks 

In asset allocation and risk management, it is often argued that models matter most when they 

are least useful partly because in market downturns correlation ceases to be an adequate 

summary of comovement and tend to be misleading for investors to make their decisions. 

Against this background, quite a few authors have made contributions in this field by extending 

the classical correlation-based measure of comovement to more comprehensive ones such as Li 

(2014). While the use of more elaborate measures and tests is of central interest to the financial 

industry and academia alike, it is shown in this note that the performance of the model-free 

approach does have the drawback of being sensitive to underlying parameters. The interaction 

between tails of the marginal distribution across different states is intimately related to factors 

such as the correlation differential, tail threshold and mixture probabilities. In view of this, one 

should always bear a grain of caution in mind when interpreting the test result.  

 

 

 

CVX MMM BA FTSE DAX NKY

IBM -1.650  (0.099) -1.328  (0.184) 0.819   (0.413) S&P 0.852   (0.394) 0.917   (0.359) 1.199   (0.231)

CVX 0 -2.126  (0.033) -1.731  (0.084) FTSE 0 -0.507  (0.612) 1.115   (0.265)

MMM 0 -1.617  (0.106) DAX 0 2.508   (0.012)

BA 0 NKY 0 

CVX MMM BA FTSE DAX NKY

IBM 1.285   (0.199) 0.257   (0.797) 1.339   (0.181) S&P 1.740 (0.082) 0.745   (0.456) 1.749   (0.080)

CVX 0 -0.086  (0.931) 1.180   (0.238) FTSE 0 -0.462  (0.644) 1.899   (0.058)

MMM 0 1.202   (0.229) DAX 0 0.241   (0.809)

BA 0 NKY 0 

Note: p -values are in parenthesis. Standard errors are based on the Newey-West HAC estimator. The test statistic is 

squared and compared to a χ2
(1) distribution. 

Table 4

Pairwise state-free tail dependence test, H0: symmetric tail dependence.

DJIA Top 4                                          

(January 1, 2007-December 31, 2010, 1007 obs.)

U.S.-U.K.-Ger-Jp                                      

(1 Jan. 1998-31 Dec. 2012, 3483 obs.)

tail threshold c =0

tail threshold c =1
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