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Abstract
This paper derives a second-best congestion toll for when two congestible facilities are perfect substitutes, but only

one facility can be priced, and where a minimum amount of toll revenue must be generated. It is shown that the

resulting, second-best toll equals a weighted average of the social planner's optimal toll and the profit-maximizing toll

of a private monopolist, with the shadow price of the revenue constraint serving as the weight. As the revenue

constraint is relaxed, the social planner's toll becomes more efficient. But when the revenue constraint becomes more

difficult to satisfy, monopoly pricing becomes more efficient.
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1.   Introduction 

 

Consider a vehicle that enters a highway during a congested commute period.  The marginal 

social cost of that vehicle’s trip is the sum of a marginal private cost and a marginal external 

cost.  The private cost includes the vehicle’s operating cost and the value of its passengers’ time.  
The external cost is the further delay it imposes on the highway’s existing travelers, often 

referred to as a “congestion externality”.  Because each entering vehicle does not bear the 
congestion externality it generates, the traffic volume on the highway will be inefficiently high.  

A well-established result in the congestion pricing literature is that a road toll equal to the 

external congestion cost will reduce traffic to an optimal level (Walters 1961).  That toll 

represents a “first-best” toll, which can be interpreted as a Pigouvian tax that bridges the gap 

between the marginal social and marginal private costs of road use (Small and Verhoef 2007). 

  

In practice, first-best tolls are often infeasible for political or practical reasons.  This gives rise to 

the analysis of “second-best” pricing schemes, where welfare is maximized subject to one or 
more constraints.  One such constraint is when only a portion of a highway can be tolled.  For 

example, several highways in the United States include “express lanes” where motorists can pay 

for less-congested travel.  The highway’s other lanes must remain untolled.  In the congestion 

pricing literature, this presents a “two-route pricing problem” where the second-best toll on the 

express lanes must be determined with the understanding that traffic diverted from those lanes 

will worsen congestion on the untolled lanes (Verhoef et al. 1996). 

 

Another constraint is when toll revenues must reach some minimal level to help finance public 

projects.  Analyzing those circumstances is where transportation economics overlaps with public 

economics, because the resulting second-best toll can be interpreted as a form of Ramsey pricing 

(Sandmo 1975, Oum and Tretheway 1988). 

 

A real-world scenario that has not been analyzed until now is when the above constraints must be 

simultaneously met.  The most prevalent examples worldwide are the express-lane facilities 

mentioned above, tolled highways that serve the same destinations as untolled highways, and 

“cordon pricing” schemes where tolls are required along certain routes into urban centers.  In 

each case, tolled and untolled alternatives are available, and some minimum amount of toll 

revenue must be generated to help finance public projects (Dixit et al. 2010).  A more recent 

example comes from the Los Angeles and Long Beach maritime ports, where trucks entering the 

ports during peak operating periods must pay a “traffic mitigation fee”, but can avoid the fee by 
entering during off-peak hours.  A minimum amount of fee revenue must be generated to finance 

off-peak port operations and other obligations attached to the program (Steimetz et al. 2008). 

 

Each of those scenarios presents a two-route congestion pricing problem with a Ramsey-type 

revenue constraint, which has not been previously analyzed.  The purpose of this paper is to 

derive the optimal congestion toll under such circumstances, to reveal its implications, and to 

demonstrate how it links more familiar results from the literatures on congestion pricing and 

Ramsey pricing.  A particularly compelling finding is that the optimal toll turns out to be a 

weighted-average of the social planner’s (second-best) welfare-maximizing toll and the private 

monopolist’s profit-maximizing toll, where the shadow price of the revenue constraint serves as 

the weight.  A practical implication is that monopoly pricing strategies become more efficient as 



 

 

the revenue requirement becomes increasingly difficult to satisfy.  On the other hand, the social 

planner’s pricing strategy becomes more efficient as the revenue constraint is relaxed. 

 

 

2.   Review of Previous Findings 

 

2.1   The Social Planner’s Two-Route Pricing Problem 

 

Consider two parallel roads that are perfect substitutes for travelling from an origin to a 

destination, but tolls may only be charged on one of them.  Road users are homogeneous except 

for differences in their willingness to pay for trips on either road.  Let ்ܸ  and ௎ܸ denote the 

traffic volumes on the tolled and untolled route, respectively, with ்ܿሺ்ܸ ሻ and ܿ௎ሺ ௎ܸሻ 

representing the average user cost on each route.  Those average costs are typically interpreted as 

marginal private costs, with ܿ ′் > Ͳ and ܿ௎′ > Ͳ indicating that both routes are congestible.  

Recalling that the roads are pure substitutes, the overall inverse demand function for the pair of 

roads is ݀ሺ்ܸ + ௎ܸሻ, where 
�ௗ�௏೅ = �ௗ�௏ೆ ≡ ݀′ < Ͳ.  In equilibrium, the marginal benefit of using 

either road must equal its “generalized price”, ��, such that ݀ = �் = ்ܿ + � on the tolled route, 

with � denoting the toll amount, and ݀ = �௎ = ܿ௎ on the untolled route. 

 

Following Verhoef et al. (1996), the social planner’s second-best toll is derived from maximizing 

the Lagrangian function:
1
 

 

ܮ  = ∫ ݀ሺ�ሻ݀� − ்ܿሺ்ܸ ሻ ∙ ்ܸ௏೅+௏ೆ଴ − ܿ௎ሺ ௎ܸሻ ∙ ௎ܸ 

 

       +�் ∙ [்ܿሺ்ܸ ሻ + � − ݀ሺ்ܸ + ௎ܸሻ] + �௎ ∙ [ܿ௎ሺ ௎ܸሻ − ݀ሺ்ܸ + ௎ܸሻ]  (1) 

 

where �் and �௎ are shadow prices for the equilibrium constraints; they measure the marginal 

welfare gain that would result from a marginal increase in the ability to charge a toll on either 

road.  The second-best outcome yields �� = Ͳ because the toll on road ܶ is set optimally, and �௎ > Ͳ because welfare could increase if a toll were allowed to manage congestion on road ܷ. 

 

Solving the first-order conditions from maximizing (1), Verhoef et al. (1996) show that the 

second-best toll is: 

 

 � = ܿ ′் ்ܸ − ܿ௎′ ௎ܸ −ௗ′௖ ′ೆ −ௗ′        (2) 

 

To interpret (2), note in general that the marginal social cost of entering road � is ܵܯ�� = �ܿ +�ܿ′ �ܸ, which is the sum of the marginal private cost ( �ܿሻ and the marginal external congestion cost 

( �ܿ′ �ܸሻ.  The latter expression shows that the congestion externality is the increased travel cost 

                                                           
1
 Throughout this paper, only short-run welfare-maximization problems are analyzed for ease of expression (mainly 

to avoid cumbersome notation for partial derivatives).  Long-run analyses include road capacity costs, whether 

publically or privately incurred, but the resulting optimal tolls are identical to those of their corresponding short-run 

analyses.  Moreover, only “static congestion” during a single commute period is considered, where it is assumed that 
tolls do not influence motorists’ departure times. 



 

 

imposed on each user, multiplied by the number of affected users.  If tolls could be charged on 

both roads, then the first-best toll on each road would be �� = �ܿ′ �ܸ.  We see from (2), however, 

that the toll on road ܶ is lower than that first-best toll because traffic diverted from the tolled 

route spills over onto the untolled route.  This is more easily seen if overall demand were 

perfectly-inelastic such that ݀′ → ∞.  In that case, the resulting second-best toll would be 

 

 � = ܿ ′் ்ܸ − ܿ௎′ ௎ܸ         (3) 

 

which is the external congestion cost on the tolled route, less the external congestion cost 

imposed on the untolled route. 

 

 

2.2   The Private Monopolist’s Two-Route Pricing Problem 

 

Suppose that the above, two-route problem were instead faced by a private monopolist operating 

both routes.  A real-world example of that scenario would be the express-lane facility on State 

Route 91 in Southern California, which was operated by a private franchisee until 2003.  The 

objective then becomes one of finding the short-run, profit-maximizing toll using the Lagrangian 

function:
2
 

 

ܮ  = � ∙ ்ܸ + �் ∙ [்ܿሺ்ܸ ሻ + � − ݀ሺ்ܸ + ௎ܸሻ] + �௎ ∙ [ܿ௎ሺ ௎ܸሻ − ݀ሺ்ܸ + ௎ܸሻ] (4) 

 

Small and Verhoef (2007) demonstrate that this yields the profit-maximizing toll: 

 

 � = ܿ ′் ்ܸ − ்ܸ ݀′ ௖ ′ೆ௖ ′ೆ −ௗ′        (5) 

 

Comparing (5) to (2), and recalling that ݀′ < Ͳ, we see that the monopolist’s toll is greater than 

the social planner’s second-best toll, and also greater than the first-best toll (� = ܿ ′் ்ܸ ).  The 

markup over the first-best toll depends on users’ price-sensitivity (reflected in ݀′) and the degree 

of congestion on the untolled route (reflected in ܿ௎′ ), along with the equilibrium traffic volume on 

the tolled route. 

 

 

2.3   The Social Planner’s Single-Route Ramsey Pricing Problem 

 

Now consider only a single route, which can be tolled, but must generate short-run toll revenues 

of at least ܴ to help finance public projects.  This represents a specific case of the more general 

pricing problems analyzed in the Ramsey pricing literatures without externalities (Ramsey 1927, 

Baumol and Bradford 1970) and with externalities (Sandmo 1975, Oum and Tretheway 1988).  

Given the revenue constraint, the second-best toll is derived from the Lagrangian: 

 

                                                           
2
 In the long run, this monopolist faces a capacity-cost constraint, which can be viewed as a minimum-revenue 

constraint.  That constraint is omitted from (4), however, to focus on short-run welfare analyses and to avoid 

confusion when analyzing the effects of changing the shadow price of a revenue constraint.  Note that including a 

capacity-cost constraint would not alter any of the results presented herein. 



 

 

ܮ = ∫ ݀ሺ�ሻ݀� − ܿሺܸሻ ∙ ܸ௏଴ + � ∙ {[ܸ ∙ [݀ሺܸሻ − ܿሺܸሻ] − ܴ}    (6) 

 

noting that the equilibrium constraint, ݀ = ܿ + �, has been directly incorporated into the 

objective function.  Small and Verhoef (2007) show that the optimal toll in this case is: 

 

 � = ܿ′ܸ − � ଵ+� ݀′ܸ         (7) 

 

where � is the shadow price of the revenue constraint, and the familiar Ramsey number, 
� ଵ+�, 

appears in the markup over the first-best toll.  To more clearly see how (7) is related to the 

general Ramsey-pricing rule, recall that ܵܯ� = ܿ + ܿ′ܸ and that � is the generalized price of 

road use, where in equilibrium � = ݀ = ்ܿ + �.  The well-known Ramsey rule (Baumol and 

Bradford 1970) emerges when expressed as a markup of the generalized price (including the toll) 

over marginal social cost: 

 

 
�−ெௌ�� = � ଵ+� ∙ ଵ�         (8) 

 

where � ≡ − ଵௗ′ �௏ is the absolute value of the road’s demand elasticity.  When the revenue 
constraint is non-binding, the markup over marginal social cost is zero because the first-best toll 

applies.  And when the revenue constraint becomes increasingly-difficult to satisfy, such that � → ∞, then the private monopolist’s profit-maximizing toll is invoked.  (In Section 4, the 

interpretation of � is discussed in greater detail.) 

 

 

3.   A Two-Route Ramsey Pricing Problem 

 

This paper’s main contribution can now be presented.  Consider the two parallel routes discussed 
previously, where only one can be tolled, but now with the additional constraint that a minimum 

revenue of ܴ must be generated to help finance public projects.  An increasingly prominent 

example is when only some of a highway’s lanes are designated as tolled express lanes, and toll 

revenues are earmarked for public use (beyond covering the highway’s capacity costs). 

 

From an analytic standpoint, this amounts to adding a revenue constraint to (1).  At first glance, 

the addition of that constraint may seem subtle.  However, since the seminal work of Verhoef et 

al. (1996), considerable research has been devoted to understanding how optimal taxes and tolls 

are influenced by such revenue requirements — see, for example, Mayeres and Proost (2001), 

Parry and Bento (2001), and Proost et al. (2007).  Yet, until now, those influences have not been 

analyzed in the context of a two-route pricing problem.  This has left an important gap in the 

literature because relevant scenarios are becoming increasingly prevalent in the real world, such 

as the tolled express lanes on several urban highways in the United States, and cordon-pricing 

schemes in the United Kingdom, Sweden, and Singapore to name a few. 

 

For example, suppose that the revenue from a single toll road is intended to help reduce sales 

taxes.  This will increase the (second-best) optimal toll if the distortion caused by increasing the 

toll is less than the distortion mitigated by lowering sales taxes.  Hence, the revenue requirement 



 

 

affects the optimal toll level.  A salient question is: does an analogous result hold for a two-route 

pricing problem? 

 

To answer that question, the second-best toll from the social planner’s perspective is derived by 

maximizing the Lagrangian function: 

 

ܮ  = ∫ ݀ሺ�ሻ݀� − ்ܿሺ்ܸ ሻ ∙ ்ܸ௏೅+௏ೆ଴ − ܿ௎ሺ ௎ܸሻ ∙ ௎ܸ 

 

       +�் ∙ [்ܿሺ்ܸ ሻ + � − ݀ሺ்ܸ + ௎ܸሻ] + �௎ ∙ [ܿ௎ሺ ௎ܸሻ − ݀ሺ்ܸ + ௎ܸሻ] 
 

                   +� ∙ [� ∙ ்ܸ − ܴ]         (9) 

 

which mimics (1) but adds the toll-revenue constraint and its associated shadow price, �.  The 

addition of that revenue constraint is what links the analyses of two-route pricing problems and 

Ramsey pricing problems. 

 

The first-order conditions with respect to ்ܸ , ௎ܸ, and � are: 

 

 
�௅�௏೅ = ݀ − ்ܿ − ܿ ′் ்ܸ + �் ∙ ሺܿ ′் − ݀′ሻ − �௎݀′ + �� = Ͳ 

  

 
�௅�௏ೆ = ݀ − ܿ௎ − ܿ௎′ ௎ܸ − �்݀′ + �௎ ∙ ሺܿ௎′ − ݀′ሻ = Ͳ 

 

 
�௅�� = �் + �்ܸ = Ͳ         (10) 

 

while the first-order conditions for �், �௎, and � return the equilibrium constraints on the tolled 

and untolled routes, along with the revenue constraint. 

 

Note that without the revenue constraint, �் would equal zero because the toll could be set 

optimally (in the second-best sense).  From (10), however, we see that �் = −�்ܸ < Ͳ, 

indicating that welfare improves with each marginal reduction in the revenue constraint, and �் = Ͳ only when the revenue constraint is non-binding. 

 

To solve for the optimal toll, begin with the first-order conditions for ௎ܸ and �, along with the 

equilibrium constraints to obtain: 

 

  �௎ = ௖ ′ೆ ௏ೆ௖ ′ೆ −ௗ′ − � ௗ′௏೅௖ ′ೆ −ௗ′ > Ͳ        (11) 

 

Equation (11) demonstrates that welfare could be improved by allowing tolls to manage 

congestion on the untolled route, and would be further improved by marginal reductions in the 

revenue constraint.  In fact, Small and Verhoef (2007) show from (1) that �௎ = ௖ ′ೆ ௏ೆ௖ ′ೆ −ௗ′.  
Comparing that result to (11), we see that the welfare loss from the inability to toll route ܷ is 

exacerbated by the revenue constraint. 



 

 

 

Applying (11) to the first-order condition for ்ܸ  and solving for � yields a congestion pricing 

variant of Ramsey pricing: 

 

 � = [ ଵଵ+�] [ܿ ′் ்ܸ − ܿ௎′ ௎ܸ −ௗ′௖ ′ೆ −ௗ′] + [ �ଵ+�] [ܿ ′் ்ܸ − ்ܸ݀′ ௖ ′ೆ௖ ′ೆ −ௗ′]    (12) 

 

A striking finding arises when comparing (12) with (2) and (5).  We see that the second-best toll 

is a weighted average of the social planner’s optimal two-route pricing scheme and the private 

monopolist’s profit-maximizing scheme.  The weight is the shadow price of the revenue 

constraint, which is related to the social cost of public funds (in a general-equilibrium sense) and 

is discussed below in further detail.  We also see the familiar Ramsey number, 
�ଵ+�, appearing in 

the second term on the right-hand-side of (12). 

 

 

4.   Implications 

 

To appreciate the implications of (12), it is important to understand the role played by the 

revenue constraint’s shadow price, �, which measures the marginal welfare gain from each dollar 

of toll revenue (� ∙ ்ܸ ) raised.  Equivalently, it measures the welfare improvement from reducing 

the revenue requirement (ܴ) by one dollar.  The level of the revenue requirement is dictated by 

the need for public funds, which might otherwise be raised through taxation on goods or labor. 

The shadow price is therefore positive (� > Ͳ) if raising public funds from toll revenues is less 

distortionary than raising them from other sources such as a sales tax.
3
  If the revenue constraint 

is non-binding (� = Ͳሻ, it means that there is no welfare gain from generating additional toll 

revenues (aside from the corrective effects of the toll) because revenues from other sources are 

no more distortionary. 

 

Accordingly, the optimal toll in (12) depends on the extent to which the revenue constraint is 

binding.  The more distortionary it is to generate revenues from other sources, the more it makes 

sense to raise revenue from tolls.  In the limiting case where � → ∞, we see from (12) that the 

private monopolist’s profit-maximizing toll in (5) is optimal.  In that case, the social planner 

behaves like a monopolist to generate the maximum, feasible amount of toll revenue.  On the 

other hand, if the revenue constraint is non-binding (� = Ͳ), then naturally the social planner’s 
second-best toll in (2) is more efficient.  More generally, when the burden of financing public 

projects with toll revenues increases, it reduces the welfare gains from congestion pricing by 

pushing the toll toward a monopoly price. 

 

To better see how (12) fits within the more traditional Ramsey pricing literature, suppose that 

only the tolled road were to exist.  In that case, ௎ܸ → Ͳ because traffic volume on the untolled 

                                                           
3
 The quantity ͳ + � can be interpreted as the “marginal cost of public funds”, which is the marginal social cost of 

raising each dollar through taxation (see, for example, Small and Verhoef 2007).  Under that interpretation, � > Ͳ 

means that the marginal cost of public funds exceeds one, implying a relatively distortionary tax system.  In contrast, � = Ͳ means that the marginal cost of public funds equals one, implying that the revenues generated by the toll road 

and the tax system carry the same welfare effects. 



 

 

road vanishes, and ܿ௎′ → ∞ because congestion increases without limit when adding a vehicle to 

a road with infinitesimal capacity.  The second-best toll then reduces to 

 

 � = ଵଵ+� ܿ′ܸ + �ଵ+� ሺܿ′ܸ − ݀′ܸሻ = ܿ′ܸ − �ଵ+� ݀′ܸ     (13) 

 

which is a weighted average of the first-best toll and the monopolist’s profit-maximizing toll, 

with the shadow price of the revenue constraint serving as the weight, and is equivalent to the 

single-route Ramsey price in (7).  Furthermore, applying the conditions � = ݀ = ܿ + � and ܵܯ� = ܿ + ܿ′ܸ to (13) yields 

 

 
�−ெௌ�� = � ଵ+� ∙ ଵ�         (14) 

 

as in (8), where � is the absolute value of the road’s demand elasticity. 
 

Thus, we see that the two-route Ramsey pricing problem is essentially a generalization of the 

single-route problem.  And its implications are consistent with those of more traditional Ramsey 

pricing analyses, in the context of a marginal social cost that includes an externality (Oum and 

Tretheway 1988).  If the revenues from corrective pricing mechanisms are intended to replace 

more distortionary sources of public financing, then those prices depart from their optimal levels 

and move closer to monopoly levels. 

 

 

5.   Concluding Remarks 

 

This paper derives a second-best, congestion pricing strategy for when two congestible facilities 

are perfect substitutes, but where only one facility can be priced, and where a minimum amount 

of toll revenue must be generated.  In doing so, it clarifies how such revenue constraints induce 

departures from optimal pricing schemes toward monopoly pricing schemes.  It also clarifies 

how related findings in the congestion pricing and Ramsey pricing literatures are linked. 
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