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1 Introduction

In this paper we show a method for Bayesian inference in a Markov switching vector error

correction model (MS-VECM) that allows for regime shifts in the number of cointegrating

rank, the cointegrating vectors, the adjustment terms, the deterministic terms, the lag terms and

the variance-covariance matrix. Jochmann and Koop (2015) study Bayesian approach to an

MS-VECM, based on Chib (1998), using a valid prior for the cointegrating space (Strachan and

van Dijk (2003), Strachan and Inder (2004), and Villani (2005, 2006)) and a collapsed Gibbs

sampling method to estimate the cointegrating vectors (see Koop et al. (2009)). In this paper

we use different prior densities from those used by Jochmann and Koop (2015) and employ the

multi-move Gibbs sampling method to sample the state variable (see Carter and Kohn (1994)

and Shephard (1994) and Kim and Nelson (1998)), instead of the method by Chib (1998).

The multi-move Gibbs sampler We derive the posterior densities for the MS-VECM allowing

for regime shifts in the number of cointegrating rank as well as any parameter including the

adjustment terms and the cointegrating vectors. We also consider more restrictive model where

the cointegrating vectors are not regime-dependent since changing the long-run relationships

with regime shifts might not be reasonable in many economic applications. We illustrates an

empirical application to U.S. term structure of interest rates in Section 3. All results reported

in this paper are generated using Ox version 7.00 for Linux (see Doornik, 2013).

2 Markov Switching Vector Error Correction Model

2.1 MS-VECM

This section introduces an MS-VECM and presents a Bayesian approach to estimate the model.

Let yt denote an I(1) vector of 1×n with r linear cointegrating relations. A VAR system with

normally distributed Gaussian innovations εt ∼ iidN(0,Ω) can be written as a vector error

correction model (VECM) with the number of lags p

∆yt = yt−1βα+µ+
p

∑
l=1

∆yt−lΓl + εt , (1)

where β (n× r) contains the cointegrating vectors, α (r× n) contains the adjustment terms, µ

(1× n) is the vector of intercept terms, and Γl (n× n) is the lag term. If we assume that r, β,

α, µ, Γl’s, and Ω in the VECM in (1) are subject to an unobservable discrete state variable st

that evolves according to an m-state, first-order Markov switching process with the transition

probabilities, p(st = i | st−1 = j) = qi j, i, j = 1, . . . ,m , then an MS-VECM is written as

∆yt = yt−1β(st)α(st)+µ(st)+
p

∑
l=1

∆yt−lΓl(st)+ εt , (2)

where β(st) is n× r(st), α is r(st)×n, and εt ∼ N(0,Ω(st)).
The MS-VECM in (2) can be rewritten as

∆yt = yt−1β(st)α(st)+ ztΦ+ εt , (3)

where zt is 1×m(1+np) and Φ is m(1+np)×n, and defined as

zt = (ιt(1), . . . , ιt(m), ιt(1)∆yt−1, . . . , ιt(1)∆yt−p, . . . , ιt(m)∆yt−1, . . . , ιt(m)∆yt−p),
Φ = (µ(1)′, . . . ,µ(m)′,Γ1(1)

′, . . . ,Γp(1)
′, . . . ,Γ1(m)′, . . . ,Γp(m)′)′,



and ιt(i) in zt is an indicator variable that equals to 1 if regime is i at t, and 0 otherwise. From

equation (3), let define

the T ×n matrices Y T = ( ∆y′1, . . . , ∆y′T )′ and E = ( ε′1, . . . , ε′T )′ ,

the T ×n matrix Xi = ( y′0ι0(i), y′1ι1(i), . . . , y′T−1ιT−1(i) )′,

the T ×m(1+np) matrix ZT = ( z′1, z′2, . . . , z′T )′,

the T ×h (where h = m(1+np)+∑m
i=1 r(i) ) matrix W = ( X1β(1), . . . , Xmβ(m), ZT ),

the h×n matrix B = ( α(1)′, . . . , α(m)′, Φ′ )′,
then we can simplify the model as follows:

Y T =
m

∑
i=1

Xiβ(i)α(i)+ZT Φ+E (4)

= WB+E. (5)

Thus, to estimate the MS-VCEM in (2), we consider the simplified form given in (5).

2.2 Priors

In this paper we adopt the collapsed Gibbs sampling method to generate the cointegrating

vector, developed by Koop et al. (2009).

They propose the following transformation:

βα = (βκ)(κ−1α) =
[
β
(
αα′
)1/2

][(
αα′
)−1/2

α
]
≡ ba,

where κ ≡ (αα′)1/2
is a positive definite matrix and a = κ−1α is semi-orthogonal. Thus, the

transformation for the MS-VECM is

β(st)α(st) = [β(st)κ(st)]
[
κ(st)

−1α(st)
]

=
[
β(st)

(
α(st)α(st)

′
)1/2

][(
α(st)α(st)

′
)−1/2

α(st)
]
≡ b(st)a(st),

where κ(st)≡ [α(st)α(st)
′]1/2

, and thus b(st) = β(st)κ(st). We assign a matric-variate normal

distribution to the prior for b(st) as b(st)∼ MV N (b0(st),Vb0
(st)), that is, if b̃(st) = vec(b(st)),

then b̃(st) is a multivariate normal with mean b̃0(st) = vec(b0(st)) ∈ R
nr(st)×1 and variance-

covariance matrix Vb0
(st) ∈ R

nr(st)×nr(st):

b̃(st)∼ MN(b̃0(st),Vb0
(st)). (6)

Next, we consider a prior for the transition probabilities qi j, i, j = 1, . . . ,m. We assign a

beta distribution for this prior as

qi j ∼ beta
(
ui j, ūi j

)
, (7)

where ui j and ui j are the known hyperparameters of the priors, ūii = Pr (st 6= i | st−1 = i) and

ūi j = Pr (st = j | st−1 = i,st 6= i) for i 6= j, beta refers to a beta distribution with density π(qi j |

ui j, ūi j) =
Γ(ui j+ūi j)

Γ(uii j)Γ(ūi j)
q

ui j−1

i j (1−qi j)
ūi j−1.

With regard to prior for B in (5), we use an inverted Wishart prior for Ω(st) with a positive

definite matrix Ω0(st) ∈ R
n×n and the degrees of freedom ν0(st):



Ω(st)∼ IW (Ω0(st),ν0(st)) . (8)

As for a prior for B, we consider the vector form of B and assign a multivariate normal prior

for vec(B) with mean vec(B0) ∈ R
nh×1 and variance-covariance matrix VB0

∈ R
nh×nh where

h = m(1+np)+∑m
i=1 r(i) :

vec(B)∼ MN (vec(B0) ,VB0
) . (9)

2.3 Posterior Specifications

In this subsection we derive the posterior densities from the priors and the likelihood func-

tions. First, we derive the state variable S̃T = {s1,s2, . . . ,sT}
′
. To sample the state variable

S̃T we employ the multi-move Gibbs sampling method proposed by Carter and Kohn (1994)

and Shephard (1994) and applied to a Markov switching model by Kim and Nelson (1998).

The multi-move Gibbs sampling refers to simulating st , t = 1,2, . . . ,T , as a block from the

following conditional distribution:

p
(

S̃T | Θ,Y T
)
= p

(
sT | Θ,Y T

)T−1

∏
t=1

p
(
st | st+1,Θ,Y t

)
, (10)

where Θ=(B,b,Ω,q), b=(b(1), . . . ,b(m)), Ω=(Ω(1), . . . ,Ω(m)), and q=(q11,q12, . . . ,qmm).
The first term of the right hand side of equation (10), p

(
sT | Θ,Y T

)
, can be obtained from run-

ning the Hamilton filter (Hamilton, 1989). To draw st conditional on st+1, Θ and Y t , we use the

following results:

p
(
st | st+1,Θ,Y t

)
=

p(st+1 | st ,Θ,Y t) p(st | Θ,Y t)

p(st+1 | Θ,Y t)
∝ p(st+1 | st) p

(
st | Θ,Y t

)
, (11)

where p(st+1 | st) is the transition probability. The second mass function in (11), p(st | Θ,Y t),
can be obtained as follows. First, we determine p(st |Θ,Y t−1) by the prediction step:

p(st |Θ,Y t−1) =
m

∑
i=1

p(st |st−1 = i,Θ)p(st−1 = i|Θ,Y t−1), (12)

then we determine p(st |Θ,Y t) by the update step:

p(st |Θ,Y t) ∝ p(st |Θ,Y t−1) f (yt |Θ,Y t−1), (13)

where f (yt |Θ,Y t−1) is a density function of yt conditional on Θ and Y t−1. Repeat these steps

for all t = 1, . . . ,T . Using equation (11) we compute:

p
(
st = 1 | st+1,Θ,Y t

)
=

p(st+1 | st = 1) p(st = 1 | Θ,Y t)

∑m
i=1 p(st+1 | st = i) p(st = i | Θ,Y t)

. (14)

Once above probability is computed, we draw a random number from a uniform distribution,

and if the generated number is less than or equal to the value calculated by equation (14), we set

st = 1. Otherwise, we generate another random number from the uniform distribution. Then,

if the generated number is less than or equal to p(st = 2|st+1,Θ,Y T ,st 6= 1), then we set st = 2,

and so on.



After drawing S̃T by the multi-move Gibbs sampling, we follow Albert and Chib (1993) and

Kim and Nelson (1998) in generating the transition probabilities qi j by multiplying equation

(7) by the likelihood function q
mi j

i j

(
1− q̄i j

)m̄i j where mi j, i, j = 1, . . . ,m , denotes the number

of the transition from the regime i to j, that can be counted for given S̃T :

p
(

qi j | S̃T

)
∝ q

ui j+mi j−1

i j

(
1− q̄i j

)ūi j+m̄i j−1
. (15)

Next, we consider deriving the conditional posterior densities for other parameters, B, Ω,

and b. From the joint posterior obtained from the joint prior multiplied by the likelihood, we

have the following conditional posterior distributions (see Appendix for derivation of these

posteriors):

Ω(i) | b(i),B, S̃T ,Y
T ∼ IW

(
(Yi −WiB)

′ (Yi −WiB)+Ω0(i), ti +ν0(i)+n+1
)
, (16)

vec(B) | b,Ω, S̃T ,Y
T ∼ MN (vec(B1) ,VB1

) , (17)

where

VB1
=

{
V−1

B0
+

m

∑
i=1

[
Ω(i)−1 ⊗

(
W ′

i Wi

)]
}−1

,

vec(B1) =VB1

{
V−1

B0
vec(B0)+

m

∑
i=1

[
(Ω(i)⊗ Ih)

−1
vec
(
W ′

i Yi

)]
}
.

To obtain the conditional posterior for b̃(i), we rewrite the expression in equation (4)

Yi −ZT
i Φ = Xiβ(i)α(i)+E

= Xib(i)a(i)+E, (18)

where Yi = IiY (T ×n), ZT
i = IiZ

T (T ×m(1+np)); Ii = diag(ι1(i), . . . , ιT (i)) is the T ×T

diagonal matrix where ιt(i) is an indicator variable that equals to 1 if regime is i at t and 0

otherwise; a(i) and b(i) are such that a(i) = (α(i)α(i)′)−
1
2 α(i) and β(i) = b(i) [b(i)′b(i)]

1
2 .

Then vectorize both side of equation (18) as

vec(Yi −ZT
i Φ) = vec [Xib(i)a(i)]+ vec(E)

=
(
a(i)′⊗Xi

)
vec(b(i))+ vec(E), (19)

or

ỹi = Aib̃(i)+ e, (20)

where ỹi = vec(Yi −ZT
i Φ), Ai = (a(i)′⊗Xi), b̃(i) = vec(b(i)), and e = vec(E). With the prior

for b̃(i)∼ MN(vec(b0(i)),Vb̃0
(i)), the conditional posterior distribution of b̃i is obtained as

b̃(i) | Ω(i),vec(B), S̃T ,Y
T ∼ MN(b̃⋆(i),Vb̃⋆

(i)), (21)

where



Vb̃⋆
(i) =

[
Vb̃0

(i)−1 +
{(

a(i)Ω(i)−1a(i)′
)
⊗
(
X ′

i Xi

)}]−1

,

b̃⋆(i) =Vb̃⋆(i)
[
Vb̃0

(i)−1vec(b0(i))+
{(

a(i)Ω(i)−1
)
⊗X ′

i

}
ỹ
]
.

After drawing b̃(i), we obtain β(i) and α(i) through a collapsed Gibbs sampler.

So far, we have assumed that β is subject to regime shifts. However, changing the long-run

relationships with regime shifts might not be reasonable in some cases. If we assume that β is

not regime-dependent, then equation (4) can be written as Y T = ∑m
i=1 Xiβα(i)+ZT Φ+E, so

that we can rewrite as

Y T −ZT Φ =
m

∑
i=1

Xiβα(i)+E

=
m

∑
i=1

Xiba(i)+E. (22)

Then vectorize both side of equation (22) as

vec(Y T −ZT Φ) =
m

∑
i=1

vec(Xiba(i))+ vec(E)

=
m

∑
i=1

(
a(i)′⊗Xi

)
vec(b)+ vec(E), (23)

or

ỹ = Ab̃+ e, (24)

where ỹ = vec(Y T −ZT Φ), A = ∑m
i=1 (a(i)

′⊗Xi), b̃ = vec(b), and e = vec(E). With the prior

for b̃ ∼ MN(vec(b0),Vb̃0
), the conditional posterior distribution of b̃i is given by

b̃ | Ω(1), . . . ,Ω(m),vec(B), S̃T ,Y
T ∼ MN(b̃⋆,Vb̃⋆

), (25)

where

Vb̃⋆
=

[
V−1

b̃0
+

m

∑
i=1

{(
a(i)Ω(i)−1a(i)′

)
⊗
(
X ′

i Xi

)}
]−1

,

b̃⋆ =Vb̃⋆

(
V−1

b̃0
vec(b0)+

m

∑
i=1

{(
a(i)Ω(i)−1

)
⊗X ′

i

}
ỹ

)
.

Given the conditional posterior distributions derived in this subsection, we implement the

Gibbs sampling to generate sample draws. The following steps can be replicated until conver-

gence is achieved.

• Step 1: Set g = 1 where g denotes the number of iteration. Specify starting values for the

parameters in the model, Θ(0) =
(

B(0),b(0),Ω(0),q(0)
)

.

• Step 2: Generate S̃
(g)
T =

{
s
(g)
1 ,s

(g)
2 , . . . ,s

(g)
T

}′
from p

(
S̃T | Θ(g−1),Y T

)
in (10), using the

multi-move Gibbs sampling algorithm.



• Step 3: Generate the transition probabilities (qi j)
(g) from p

(
qi j | S̃

(g)
T

)
in (15) for i, j =

1, . . . ,m.

• Step 4: Generate vec(B)(g) from p(vec(B) | b(g−1),Ω(g−1), S̃
(g)
T ,Y T ) in (17), then obtain

α(i)∗ and Φ from vec(B)(g). Compute a(i)∗ = (α(i)∗α(i)∗′)−1/2 α(i)∗ for i = 1, . . . ,m.

• Step 5: Generate b∗(i) from p(b̃(i) | Ω(i)(g−1),vec(B)(g), S̃
(g)
T ,Y T ) in (21) for the model

with regime-dependent β, then compute β(i)(g) = b(i)∗(b(i)∗′b(i)∗)−
1
2 and α(i)(g) =

(b(i)∗′b(i)∗)
1
2 a(i)∗ for i = 1, . . . ,m. Or, for the model with constant β, generate b∗

from p(b̃ | Ω(g−1),vec(B)(g), S̃
(g)
T ,Y T ) in (25), then compute β(g) = b∗(b∗′b∗)−

1
2 and

α(i)(g) = (b∗′b∗)
1
2 a(i)∗ for i = 1, . . . ,m.

• Step 6: Generate Ω(i)(g) from p(Ω(i) | b(i)(g),B(g), S̃
(g)
T ,Y T ) in (16) for i = 1, . . . ,m.

• Step 7: Set g = g+1, and go to Step 2.

Step 2 through Step 7 can be iterated G times to obtain the posterior means or standard devia-

tions. Note that the first G0 times iterations are discarded in order to attenuate the effect of the

initial values.

3 Application: U.S. Term Structure of Interest Rates

In this section we present an empirical study using the MS-VECM to analyze U.S. term struc-

ture of interest rates. The expectations hypothesis of the term structure of interest rates implies a

long-run relationship between long and short term interest rates. For an overview of the expec-

tations hypothesis theory, see Shiller and McCulloch (1990). Let Rt( f ) be the yield to maturity

for an f -period at time t, then the hypothesis implies that Rt( f ) and Rt(1) are cointegrated

with cointegrating vector (1,−1), see Campbell and Shiller (1987). Thus, the expectations

hypothesis implies the following vector error correction model with the lag length at p:

∆yt = µ+ yt−1βα+
p

∑
l=1

∆yt−lΓl + εt , (26)

where yt = ( Rt( f ), Rt(1) ) and εt ∼ iidN(0,Ω).
There is a number of research that confirms nonlinearity of U.S. term structure of interest

rates due to changes in monetary policy. Tsay (1998), Hansen and Seo (2002), Clements and

Galvao (2003) use a threshold cointegration model, while Clarida et al. (2006) and Tillmann

(2007) employ a Markov switching vector error correction model to detect regime switching.

All these studies find nonlinearity due to the instability for interest rates between 1979 and

1982 as a potential source of shifts. This period between 1979 and 1982 is known as the

non-borrowed reserves operating procedure, that the Federal Reserve moved from interest rate

targeting to money growth targeting and allowed the interest rate to fluctuate freely.

We apply the MS-VECM to U.S. term structure of interest rate to account for the regime

shifts as:

∆yt = µ(st)+ yt−1β(st)α(st)+
p

∑
l=1

∆yt−lΓl(st)+ εt , (27)

where εt ∼ N(0,Ω(st)).



Figure 1: Interest rates (in % p.a.) on US bonds of maturity f (in months)
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Source: Federal Reserve Bank of St.Louis

The data set is monthly three-month ( f = 3), six-month ( f = 6), and five-year ( f = 60) US

bonds covering the period 1960:1 to 2016:01 with 672 observations. These data are obtained

from the Federal Reserve Bank of St. Louis. A pairwise plot of the series, using three-month

( f = 3) rate as a short rate, is presented in Figure 1.

We consider bivariate two-regime MS-VECMs for the term structure because a parsimo-

nious model is highly appreciated as Tillmann (2007) notes. Thus, we model bivariate MS-

VECMs for two pairs of interest rates - one is for the yt = [Rt(6),Rt(3)] pair of interest rates and

the other is for the yt = [Rt(60),Rt(3)] pair of interest rates. For each pair of the interest rates,

we consider models with the cointegrating rank r = 0 or 1 for each regime, that is, (r1,r2) = (0,

0), (0, 1), ..., (1, 1), where ri denotes the number of rank in regime i. We also consider a model

with (r1,r2) = (1,1) where β is unaffected by regime shifts as β(st) = β. For the lag length we

consider the case p = 1 to 4. Thus, we consider a total of 20 bivariate models for each pair of

the interest rates to select the most appropriate model among them. We choose Chib (1995)’s

method for the marginal likelihood calculation to obtain the posterior model probabilities for

model selection. Chib (1996), Chib (1998), and Kim and Nelson (1999) use Chib’s method

for a Markov switching model. To estimate these models and obtain the posterior model prob-

abilities we employ the multi-move Gibbs sampling method to sample the state variable, and

implement the collapsed Gibbs sampling algorithm to sample the cointegrating vectors de-

scribed in Section 2.3. For prior hyperparameters, we set b̃0 = b̃0(i) = (1,0)′, Vb̃0
=Vb̃0

(i) = I2

for i = 1 or 2 in (6), q11 ∼ beta(u11,u12) = beta(9,1) and q22 ∼ beta(u22,u21) = beta(9,1)
in (7), Ω0(i) = I2 and ν0(i) = 10 for i = 1 or 2 in (8), VB = 10Iκnand B0 = 0 in (9) favoring

the absence of cointegration. These values are assigned to ensure fairly large variances for

representing prior ignorance. The full Gibbs sampler is run with G = 100,000. In Table 1 we

presents the posterior model probabilities obtained from the Bayes factors for all 20 models for

each pair of the interest rates, the [Rt(6),Rt(3)] and the [Rt(60),Rt(3)]. The highest posterior

model probability is given to the model with (r1,r2) = (0,1) and p = 1 for the [Rt(6),Rt(3)]
pair, and (r1,r2) = (1,1) with constant β across regimes and p = 3 for the [Rt(60),Rt(3)] pair.



Table 1: Posterior model probabilities: model selection

[Rt(6),Rt(3)]
rank(1) 0 0 1 1 1

rank(2) 0 1 0 1 1

lag p (β(i) = β)

1 0.000 0.832 0.000 0.023 0.105

2 0.000 0.038 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000

[Rt(60),Rt(3)]
0 0 1 1 1

0 1 0 1 1

(β(i) = β)

0.000 0.000 0.000 0.000 0.090

0.000 0.000 0.000 0.000 0.034

0.000 0.010 0.000 0.059 0.804

0.000 0.000 0.000 0.000 0.000

Table 2: Posterior parameter estimates

[Rt(6),Rt(3)] [Rt(60),Rt(3)]
(r1,r2) = (0,1) (r1,r2) = (1,1)

β is constant

β 0.7074 (0.0019) 0.7299 (0.0254)

-0.7068 (0.0019) -0.6835 (0.0273)

α(1) ————– -0.0389 (0.0184)

————– 0.0177 (0.0285)

α(2) 0.2272 (0.0941) -0.0333 (0.0183)

0.4747 (0.0842) 0.0369 (0.0130)

µ(1) -0.0417 (0.0576) 0.1083 (0.0781)

-0.0519 (0.0616) -0.0780 (0.1054)

µ(2) -0.0177 (0.0113) 0.0302 (0.0239)

-0.0368 (0.0117) -0.0324 (0.0161)

p11 0.8808 (0.0346) 0.8507 (0.0380)

p22 0.9597 (0.0129) 0.9537 (0.0125)

Ω̂(1) 0.5274 (0.0662) 0.2403 (0.0309)

0.6045 (0.0727) 0.5930 (0.0625)

Ω̂(2) 0.0254 (0.0024) 0.0431 (0.0033)

0.0213 (0.0017) 0.0201 (0.0017)
Note: Standard errors are in parentheses. The diagonal elements (the variances) of the regime-dependent variance-

covariance matrices are given by Ω̂(st).

We find that the equilibrium correction does not occur in regime 1 for the [Rt(6),Rt(3)] pair,

while the constant cointegrated relation can be found in both regimes for the [Rt(60),Rt(3)]
pair. These highest posterior model probabilities are dominant among other probabilities so

that choosing one model for each pair is appropriate, otherwise we could consider a Bayesian

model averaging as Peters et al. (2010).

In Figure 2 we show the posterior expectation of the state variables for each interest rate

pair, and find that both are almost identical. The non-borrowed reserves operating procedure

between 1979 and 1982 is detected as the regime shift. Regime shift occurs also between

1973 and 1976, and between 1984 and 1985. These regime shifts are corresponding to higher

inflation regime (Goodfriend, 1998), and are characterized by a much higher variance of both

the long and the short interest rate than those of regime 2.

The posterior means and standard deviations of parameters for each interest rate pair are

reported in Table 2. We find that regime 1 is characterized by a much higher variance of

both the long and the short rate than regime 2. For both pairs of the interest rates, the α(2)



Figure 2: Posterior expectation of the regime variable
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coefficients for short rate in regime 2 are significantly different from zero with positive sign.

Thus, in the low volatility period the adjustment toward equilibrium occur mainly through the

short rate Rt(3).

4 Conclusion

In this paper we consider Bayesian inference in the Markov switching vector error correction

model which allows any set of parameter in the model, including the number of cointegrating

rank, to shift with the regime according to the first order unobservable Markov process. We

employ the multi-move Gibbs sampling method to sample the state variable and derive the

posterior densities by using different prior densities from those used by Jochmann and Koop

(2015). We also consider the model where the cointegrating vectors are not regime-dependent.



Appendix

Derivation of the conditional posterior density for Ω(i) in (16) and vec(B)

in (17)

The joint prior of vec(B), b, and Ω is given by multiplication of equations (6), (8) and (9) as

follows:

p(vec(B),b,Ω) = p(vec(B))
m

∏
i=1

(
p(b̃(i))p(Ω(i))

)

∝

(
m

∏
i=1

p(b̃(i)) |Ω0(i)|
ν0(i)/2 |Ω(i)|−(ν0(i)+n+1)/2

)
|ΣB|

−1/2
exp

{
−

1

2

[
tr

(
m

∑
i=1

Ω(i)−1Ω0(i)

)

+vec(B−B0)
′Σ−1

B vec(B−B0)
]}

. (28)

The likelihood function is given by,

L

(
Y T | vec(B),b,Ω, S̃T

)
(29)

∝

(
m

∏
i=1

|Ω(i)|−ti/2

)
exp

(
−

1

2
tr

{
m

∑
i=1

[
Ω(i)−1 (Yi −WiB)

′ (Yi −WiB)
]
})

(30)

=

(
m

∏
i=1

|Ω(i)|−ti/2

)
exp

{
−

1

2

m

∑
i=1

[
vec(Yi −WiB)

′ (Ω(i)⊗ IT )
−1

vec(Yi −WiB)
]}

, (31)

where ti is the total number of observations when st = i, i = 1, . . . ,m, Yi = IiY (T × n), Wi =
IiW (T ×h), Ii = diag(ι1(i), . . . , ιT (i)) is a T ×T diagonal matrix where ιt(i) is an indicator

variable that equals to 1 if regime is i at t, and 0 otherwise.

The joint posterior for deriving Ω(i) is given as product of the joint prior in (28) and the

likelihood (30) as

p(vec(B),b,Ω | S̃T ,Y
T ) ∝ p(vec(B),b,Ω)L

(
Y T | vec(B),b,Ω, S̃T

)

∝

(
m

∏
i=1

p(b̃(i)) |Ω0(i)|
ν0(i)/2 |Ω(i)|−(ti+ν0(i)+n+1)/2

)
|ΣB|

−1/2
exp

{
−

1

2

[
vec(B−B0)

′V−1
B vec(B−B0)

]}

×exp

(
−

1

2

{
m

∑
i=1

Ω(i)−1
[
(Yi −WiB)

′ (Yi −WiB)+Ω⋆(i)
]
})

.

(32)

From the joint posterior (32), the conditional posterior density for Ω(i) can be derived as

p(Ω(i) | B,b(i), S̃T ,Y
T ) =

p(B,b(i),Ω(i), S̃T | Y T )

p(B,b(i), S̃T | Y T )
∝ p(B,b(i),Ω(i), S̃T | Y T )

∝ |Ω(i)|−(ti+ν0(i)+n+1)/2
exp

(
−

1

2
tr
{

Ω(i)−1
[
(Yi −WiB)

′ (Yi −WiB)+Ω⋆(i)
]})

= |Ω(i)|−(ti+ν0(i)+n+1)/2
exp

[
−

1

2
tr
(
Ω(i)−1Ω⋆(i)

)]
, (33)



where Ω⋆(i) = (Yi −WiB)
′ (Yi −WiB)+Ω0(i). Thus, the conditional posterior of Ω(i) is derived

as an inverted Wishart distribution as

Ω(i) | B,b(i), S̃T ,Y
T ∼ IW

(
(Yi −WiB)

′ (Yi −WiB)+Ω0(i), ti +ν0(i)+n+1
)
. (34)

With regard to the conditional posterior density for vec(B), we use the likelihood (31) to

obtain the joint posterior as multiplying the joint prior in (28) by (31), we have

p(vec(B),b,Ω | S̃T ,Y
T ) ∝ p(vec(B),b,Ω)L

(
Y T | vec(B),b,Ω, S̃T

)

∝

(
m

∏
i=1

p(b̃(i)) |Ω0(i)|
ν0(i)/2 |Ω(i)|−(ti+ν0(i)+n+1)/2

)
|ΣB|

−1/2
exp

{
−

1

2

[
vec(B−B0)

′V−1
B vec(B−B0)

]}

×exp

{
−

1

2

m

∑
i=1

[
vec(Yi −WiB)

′(Ω(i)⊗ IT )
−1vec(Yi −WiB)

]
}
.

(35)

From equation (35), we can write the key term in the last two lines as

m

∑
i=1

[
vec(Yi −WiB)

′ (Ω(i)⊗ IT )
−1

vec(Yi −WiB)
]
+ vec(B−B0)

′
V−1

B vec(B−B0)

= vec(B−B1)
′
V−1

B1
vec(B−B1)+Q,

where

Q =
m

∑
i=1

[
vec(Yi)

′ (Ω(i)⊗ IT )
−1

vec(Yi)
]
+ vec(B0)

′
V−1

B0
vec(B0)− vec(B⋆)

′
V−1

B1
vec(B⋆)

V−1
B1

=

{
V−1

B0
+

m

∑
i=1

[
Ω(i)−1 ⊗

(
W ′

i Wi

)]
}−1

,

vec(B1) =V−1
B1

{
V−1

B0
vec(B0)+

m

∑
i=1

[
(Ω(i)⊗ Ih)

−1
vec
(
W ′

i Yi

)]
}
.

For the proof of this derivation, see Appendix of Sugita (2008). Hence, the conditional posterior

density for vec(B) is derived as a multivariate normal density as follows:

p(vec(B) | b,Ω, S̃T ,Y
T ) ∝ |VB|

−1/2
exp

{
−

1

2

[
vec(B−B1)

′
V−1

B1
vec(B−B1)

]}
. (36)

Thus, the conditional posterior distributions for Ω(i) and B are given as equations (16) and (17)

respectively.
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