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Abstract
A time-varying copulas–conditional value at risk (CVaR) model is estimated to analyze the extreme risk value and

dependence structure of the China Securities Index 300 (CSI 300) and index futures portfolios. The goodness-of-fit

test as well as the in-sample and out-of-sample tests show that time-varying copulas outperform constant copulas.

Specifically, the Student's t, normal, Plackett, and the rotated Gumbel copulas outperform the rotated Clayton

copulas.
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1. Introduction 

Time-varying copulas have been widely applied in recent years. For example, Chollete et al. 
(2009) develop a regime-switching copula (RSC). Creal et al. (2011) propose the generalized 
autoregressive score (GAS) time-varying copulas. Time-varying copula models also include 
conditional normal, conditional Gumbel, and conditional symmetrized Joe-Clayton copulas. In 
this paper, a time-varying copulas-conditional value at risk (CVaR) model is applied to analyze 
the extreme risk value and dependence structure of the China Securities Index 300 (CSI 300) and 
index futures portfolios. An AR-GARCH (1, 1)-t model is estimated. Nine constants and two 
time-varying copula models are compared; the goodness-of-fit test as well as the in-sample and 
out-of-sample tests show that time-varying copulas outperform constant copula models.  

2. Methodology and Data 

Time-varying copulas allow the copula parameters to change over time. Consider a bivariate 
time series, with H(x1t, x2t) being the joint distribution. Let F1 (x1t) and F2(x2t) be the marginal 
distributions. There exists a copula C with the following joint distribution function: 

 
   ),(),( 221121 tttt xFxFСxxH 

.                  (1) 
The copula function C(xt) is shown as (1) if either one of F1 (x1t) and F2(x2t) is continuous.  
This paper considers two time-varying copulas: the elliptical copula (the Student’s t GAS) 

and the Archimedean copula (the rotated Gumbel GAS).  The inference function for margins 
(IFM) method of Joe (1997), which considers the estimation error from marginal distributions, is 
used for parameter estimation.  

The daily return of the CSI 300 and the consecutive price of index futures (IFLX0) of the 
current month are used to characterize specific features of the stock markets and index futures 
markets of China. The sample is drawn during the period from April 16, 2010 (the start date of 
the IFLX0) to September 7, 2012, which covers 585 trading days. Table 1 shows the summary 
statistics, where the daily return series of both indices clearly indicate fat-tail distributions. The 
kurtosis of IFLX0 is 5.257, which is slightly higher than the 4.456 of CSI 300, indicating that the 
index futures are more volatile. 

 
Table 1: Summary statistics 

  IFLX0 CSI 300 

 Summary Statistics 

Mean -0.001 -0.001 

Std dev                0.015 0.014 

Skewness 0.019 -0.170 

Kurtosis 5.257 4.456 

Correl (lin/rnk)       0.944 0.928 
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3. Estimation of the Marginal Distribution 

Using the Schwarz criterion, the AR (2)-GJR (1, 1)-t model and AR (0) - GJR (1, 1) -t model 
are selected to fit the marginal distributions of the IFLX0 and CSI 300 Index, respectively. The 
models are  
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where 
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t , )1,1(  is the skewness degree, and ],2(   is the degree of fat 

tail, Rt is the daily return, and t  is the new information. 
The key element among different GARCH models depends on the form of the conditional 

covariance. In the GJR-GARCH conditional variance equation, 
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0t  demonstrates positive information or positive impact, while 0t  indicates bad 
news or negative impact that affects conditional variance. The impact of good news on 

conditional variance is  , whereas the impact of bad news is   . Therefore, investors are 

more responsive to bad news if 0 , and more sensitive to good news if 0 .  
 

Table 2: Marginal Distribution Parameter Estimation 

  IFLX0 CSI 300 

 Conditional Mean 

0  0.000 -0.001 

1  -0.054 - 

2  0.015 - 

 Conditional Variance 
  0.000 0.000 
  0.029 0.014 
  0.019 0.009 
  0.946 0.965 

 Skew t Density 
  4.332 6.028 
  0.058 0.026 

 GoF Tests 
Cross-equation 
Effect p-value 0.0860 0.5687 

KS p-value 0.257 0.053 
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Table 2 shows the estimation results of the marginal distribution parameter. Both series have 
0  (0.946 for IFLX0 and 0.965 for CSI 300), which means investors are more responsive to 

bad news. A cross-equation effect is shown in Table 2, which suggests that there is no cross-
equation effect for both series. The Kolmogorov-Smirnov test shows that the AR-GJR (1, 1)-t 
distribution is well-specified for the marginal distributions of both series. 
 

4. Estimation of the Time-Varying Copula Parameter 

 

Multi-stage maximum likelihood (MSML) based on the estimation of marginal distributions 
is applied to estimate time-varying parameters of copulas. Several constant copulas are also 
estimated for comparison: Table 3 shows that Student’s t, normal, Plackett, and rotated Gumbel 
copulas outperform the rotated Clayton copula in terms of the log-likelihood values. 

 

Table 3: Constant Copula Model Parameter Estimates 
  Parametric 
 Est. Param log L 
Normal 0.9429 642.4 

Clayton 4.6731 532.9 
Rotated Clayton 4.5163 520.3 
Plackett 86.338 637.5 

Frank 9.0000 506.6 
Gumbel 4.3520 629.4 
Rotated Gumbel 4.3912 633.3 

Sym Joe–Clayton( L , U ) 0.7343, 0.889         Inf 

Student’s t(  , 1- ) 0.9000, 0.4762 647.4 

 

  
Tail dependence is estimated using the rotated Gumbel (lower tail) and Student’s t models 

(upper and lower tail). Results for the rotated Clayton copula are omitted because it only features 
the upper tail. Figure 1 illustrates the results. The Gumbel copula is higher than the Student’s t 
copula during the sample period, which indicates greater dependence between the two indices in 
a bear market as compared to a bull market. Tail dependence is low during the market downturn 
from July 2010 to February 2012. This result indicates that investment in both markets can better 
diversify market risk in a crisis, while a short hedge may not, as the two indices are likely to fall 
together during a market crash. 
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Figure 1: Conditional tail dependence 
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RotGumbel lower tail

Stud t upper and lower tail

 
 
Table 4 presents the standard errors of bootstrap estimates. Time-varying copulas outperform 

constant copulas because the log-likelihood of the Student’s t GAS copula is the highest among 
all six estimated copulas. For the in-sample test, the pairwise comparison test of Rivers and 
Vuong (2002) is applied. The Giacomini and White (2006) test is applied in the out-of-sample 
test. The out-of-sample forecasting models are considered based on a fixed window estimation 
using data from April 16, 2010 to November 23, 2011, which is two-thirds of the sample period. 
The estimated model is evaluated based on the remaining data from November 24, 2011 to 
September 7, 2012, and the out-of-sample log-likelihood values of the models are compared. 
Tables 5 and 6 show the results of the model selection test.  A t-value greater than 2 suggests that 
the left copula outperforms the top one. The results show that time-varying copulas outperform 
constant models.  
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Table 4: Standard Errors of Estimated Copulas 
  Constant 
  Naive  MSML Boot  Sim 

Normal 

̂                 0.9429 
 s.e. 0.0032 0.0075 0.0071 0.0056 

 Llog                   642.4 

Clayton 

̂                  4.6731 

 s.e. 0.2111 0.5266 0.4087 0.3807 

 Llog                  532.9 

Rotated 
Gumbel 

̂                 4.3912 
 s.e. 0.1528 0.3401 0.2520 0.2211 

 Llog                  633.3 

Student’s t 

̂                 0.9000 
s.e. 0.0000 0.0404 0.0000 0.0074 

1ˆ                   0.4762 
 s.e. 0.0000 0.2785 0.0126 0.0517 

 Llog                   647.4 
 

    Time-varying 
  Naive  MSML  Boot 

Rotated 
Gumbel 
GAS 

̂                    0.2875  
s.e. 0.0834 62.356 0.2869 
̂                    0.2521 
s.e. 0.0389 2.5404 0.0789 
̂                    0.7655 
s.e. 0.0636 46.774 0.2330 

 Llog                    649.3 

Student’s t 
GAS 

̂                    1.0211 
s.e. 0.2042 0.0000 0.6468 
̂                    0.4026 
s.e. 0.0572 0.0000 0.0878 
̂                    0.7078 
s.e. 0.4722 66.948 0.1888 
 1ˆ                     0.3255 
s.e. 0.0857 64.440 0.0603 

 Llog   676.5  

 
Note: NAÏVE means naïve standard errors, where the estimation error from the earlier stages of 
estimation (AR, GARCH and marginal distributions) is ignored. 
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Table 5: In-Sample Model Comparison 

  Normal     Clayton  
Rotated 
Gumbel      Student’s t  

Normal  - - - - 
Clayton -4.9706 - - - 
Rotated 
Gumbel        -0.6674 10.105 - - 
Student’s t      1.7096 7.1378 1.4469 - 

Log L           642.4 532.9 633.3 647.4 
Rank  2 4 3 1 

 
 

 Table 6: Out-of-Sample Model Comparison 

 Normal Clayton 
Rotated 
Gumbel Stud t RGum-GAS Stud t-GAS 

Normal - - - - - - 
Clayton -1.02 - - - - - 
Rotated 
Gumbel 1.18 3.60 - - - - 

Stud t 0.98 3.03 -0.10 - - - 
RGum-GAS 1.56 4.01 1.88 1.08 - - 
Stud t-GAS 2.05 3.81 2.32 2.93 1.49 - 

Log L 195.8 179.9 206.6 206.3 211.8 219.5 

Rank 5 6 3 4 2 1 
 
 
 

5. VaR and CVaR under Copulas and Optimal Portfolio Selection 

 

We conduct the following Monte Carlo simulation to calculate the time-varying VaR and 
CVaR values: 

Step 1:  Generate a pair of uniformly distributed random numbers 
(.)~),( ,, Cuu yjxj . 

Step 2: Calculate 
))(ˆ),(ˆ()ˆ,ˆ(ˆ

,

1

2,

1

1,, yjxjyjxjj uFuF
 

 , where F1(x) and F2(x) are the 
skewed t-distributions. 

Step 3: Calculate 
)ˆˆˆ,ˆˆˆ()ˆ,ˆ( 2

,,,

2

,,,,, tyyjtytxxjtxtytx RR  
 by using the result from the 

GARCH (1, 1) model. 

Step 4: Simulate the portfolio return tytxt RwRwR ,2,1
ˆˆ 

. The above process is repeated 
5000 times to calculate the optimal weight on index futures determined by optimal portfolio 
selection. It is based on the estimated mean-variance under CVaR constraints. The confidence 
level   of the optimal VaR and CVaR is 99%.  
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Figure 2: Time-varying optimal weight according to Student’s t copula 

 Note: q =0.01 means significant at the 1% level.  
 
 
 

Figure 2 shows that time-varying optimal weights on index futures are mostly positive. A 
larger weight on index futures than on the CSI 300 lends to better risk hedging features of index 
futures. Figure 3 shows that the VaR and CVaR are less than -6% from July 2010 to February 
2012. This is consistent with the increase of risks during a crisis. CVaR is lower than VaR in 
most of our sample period because CVaR considers tail risk beyond the VaR and thus is a better 
risk measure. 
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Figure 3: Value-at-risk and conditional value-at-risk 

Apr10 Jan12
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02
Value-at-Risk from time-varying copula models,q=0.01

 

 

RotGumbel

Stud t

Apr10 Jan12
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02
Conditional Value-at-Risk from time-varying copula models, q=0.01

 

 

RotGumbel

Stud t

 
Note: q =0.01 means significant at the 1% level. 

 
Figure 4 shows Patton’s (2012) concluding conversions of three copulas at the rank 

correlation of 1. CVaR values are clearly lower than the VaR values between the rank 
correlations of 0.2 and 0.6. The CVaR model during a crisis considers the frictions of information 
transmission between these two markets. Meanwhile, the correlation between the two markets 
drops to less than 0.6. Thus, CVaR is lower than VaR when the rank correlation is lower than 0.6. 
In contrast, the correlation in Patton (2012) is between 0.3 and 0.7, which is more balanced 
around 0.5.  
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Figure 4: Value-at-risk and conditional value-at-risk and rank correlation 
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Note: q =0.01 means significant at the 1% level and q=0.001 means significant at the 0.1% level. 

 

6. Conclusion 

In this paper, a time-varying copulas-CVaR model is employed to analyze the extreme risk 
value and dependence structure between CSI 300 Index and index futures. Nine constant and two 
time-varying copula models are tested. It is found that the Student’s t, normal, Plackett, and 
rotated Gumbel copulas outperform the rotated Clayton copulas, and that the time-varying 
copulas outperform all constant copulas.  The value of the Gumbel copula is higher than that of 
the Student’s t copula during the sample period, which indicates higher dependence between the 
two indices in a bear market than in a bull market. Tail dependence is low during the market 
downturn from July 2010 to February 2012, which indicates that investment in both markets can 
better diversify market risk during crises. The tendency toward lower tail correlation reflects the 
underdevelopment of investment instruments in China and the relatively high risk aversion of 
Chinese investors. 
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