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1 Introduction

One common difficulty for empirical researchers to consistently estimate the coefficient of
a potentially endogenous regressor of interest in a standard linear model is that exogenous
instruments are not always available. Klein and Vella (2010) and Lewbel (2012) respectively
introduce methods to identify such coefficients by utilizing the heteroscedasticity of the er-
ror terms, where excluded instruments from variables outside the equation are not required.
Klein and Vella (2010) assume that heteroscedasticity is multiplicative to the whole struc-
tural and first-stage error terms respectively with a constant correlation coefficient. Lewbel
(2012) assumes that the covariance, instead of correlation, of the structural and first-stage
error terms is a constant, which essentially requires that heteroscedasticity only exists in
the uncorrelated components of these error terms.! Nevertheless, for empirical researchers,
it is not often straightforward how to justify a-priori which form of heteroscedasticity is
true. This study investigates whether these estimators are robust to misspecification of het-
eroscedasticity and whether the existing diagnostic tests are powerful enough to distinguish
them. If not, justification of the right form of heteroscedasticity, alongside with the existence
of heteroscedasticity, are needed for applying these estimators for consistency. I also propose
putting these two estimators under the same maximum likelihood framework for estimation,
and using the Akaike Information Criteria (AIC) to obtain one more piece of evidence to
choose between models.

The two estimators, especially the Lewbel estimator, are becoming more popular because
they are easy to implement? and heteroscedasticity is common in empirical data. Most of
these studies use the estimators for robustness check against other proposed methods of
identification. Not all of them have a-priori justification for the form of heteroscedastic-
ity assumed?®, thus their estimators may be inconsistent if they assume the wrong form of
heteroscedasticity without noticing.

This study simulates data from a standard linear model with one endogenous regressor
from the forms of heteroscedasticity corresponding to the Klein and Vella (2010) and Lew-
bel (2012) specifications respectively, estimates the parameters using various methods, and
investigates the sampling distribution of the estimators and the diagnostic statistics. The
simulation results show that the two estimators are substantially biased when the assumed
and actual forms of heteroscedasticity do not match. The power of the over-identification
test for the Lewbel estimator can be low under misspecification, while AIC usually has a
reasonably high probability in choosing the right model.

In Section 2, the two methods and the underlying assumptions are discussed. Section 3
describes the simulation setting and presents the simulation results. Section 4 discusses the
case of including exogenous instrument. Section 5 concludes.

2 Model and Estimators

This study considers the linear regression model with one endogenous regressor y,. The
structural (outcome) equation is specified as:

Y1 =y201+XBr+¢€ (1)
where X contains exogenous regressors and a constant. The first-stage equation is give by
Yyp2=Zn+X7n+u (2)

where Z contains excluded exogenous instruments, which is not necessary for the methods
investigated in this paper.

2.1 The Lewbel Estimator

For the Lewbel (2012) estimator, the key identifying assumptions for coefficients, especially
[, are that there exists some variables Z,, which may be variables in X, such that

EWe) = 0

!The required condition is more general than this, but other possibilities are harder to justify in practice.
More discussions are in the later sections.

2Lewbel’s estimator can now be implemented by user written procedures in Stata (ivreg2h, see Baum and
Schaffer, 2012) and R (ivlewbel, see Fernihough, 2014).

3 Among these studies, only Emran and Shilpi (2012) and Millimet and Roy (2016) provide some justifi-
cations.



EWu) = 0

E((Zy — pa)ue) = 0 (3)
E(ZQ - IUQ) =0
E((Zy — po)u®) # 0

where W = [X, Z] are the available exogenous variables and Z, is a subset of W. The first
two assumptions are exogeneity of W. The third condition requires zero expectation for the
product of errors ue and demeaned Zs, where the fourth condition requires uy = E(Z5). The
fifth condition requires that the first stage error u is heteroscedastic in demeaned Z,. The
last three conditions imply that (Z3 — pse)u can be used as an instrument for ys.

A sufficient condition for the third condition is that the covariance between u and e con-
ditional on Z, does not depend on Zs, since E((Zy — po)ue) = E((Zy — pa2)cov(u,e|Zy)) =
E((Zy — p2)oue(22)), which is zero when o,.(22) is a constant. Equivalently, any het-
eroscedasticity related to Z, does not appear in the correlated component or common factor
of the error terms, otherwise the covariance would depend on Z,. This is the major distinc-
tion from the Klein-Vella (2010) method. Also note that it is not the only way to satisfy the
above conditions. For example, if 0, .(23) is a polynomial of even-ordered terms of Z, — ps,
then the whole term inside expectation is a polynomial of odd-ordered terms, and if Zy — s
is symmetric about zero, then this expectation is also zero. However, it is hard to justify
that an empirical application can satisfy this specific relationship. Thus, I focus on the
interpretation that the heteroscedasticity has to come from the uncorrelated components of
the error terms.

The model can be estimated by the Generalized Method of Moments (GMM) using the
first three conditions in (3). The J statistic, which is the normalized value of the GMM
objective function with optimal weight matrix, can be used as a test of overidentifying
restrictions (Hansen, 1982). If it is rejected, some of the moment conditions are likely to be
invalid. Lewbel (2012) also proposes using the Breusch and Pagan (1979) test for testing
existence of heteroscedasticity required in the first-stage error term wu, but this test may
capture the wrong form of heteroscedasticity from the correlated component.

2.2 The Klein-Vella Estimator

Klein and Vella (2010) propose using multiplicative heteroscedasticity of the two error terms
with constant correlation coefficient p to identify the model. In particular,

= S.(Zy)e*
" = Sz 4)

where S.(Z3) and S, (Z3) describe the conditional standard deviations of the error terms as
a function of Z,. ¢* and u* are homoscedastic (generally with unit variance) with constant
correlation,

corr(e*,u*) = corr(e,u|Zy) = p. (5)

So, the correlation between € and u conditional on Z5 is also a constant. This is in contrast
with Lewbel (2012) who assumes constant covariance.

A control function approach was proposed in Klein and Vella (2010), and the OLS esti-
mator for the coefficients of the following equation is then consistent:

A

SE(Z2) ~ ~
Y1 =Y + XP2+ po u+e (6)
Su(Zs)
Identification also requires that S.(Z3)/S.(Z2) depends on Z, and is not reduced to a con-
stant or a linear function of Z,.
In this paper, I first follow the parametric implementation of Farre, Klein and Vella
(2013) by assuming the functional form of variance functions* as

S.i = Jexp(ZL4.) (7)
Sui = exp(Zéﬁu)

and their 2-step process, which is outlined in the online appendix.

4This also allows for a linear model for § for easier estimation.



Klein and Vella (2009, 2010) do not explicitly propose specification tests for the existence
of heteroscedasticity for identification or tests for validity of identifying restrictions. The
Breusch and Pagan (1979) test can be used for detecting heteroscedasticity for the first-
stage error, but it cannot test for other identification requirements.

2.3 The Maximum Likelihood Estimation

This study introduces the maximum likelihood framework, which allows us to estimate the
two models in one single framework, and use the corresponding Akaike Information Criteria
(AIC) to choose a better-fit model.

Assuming the structural error € and the first-stage error u are distributed in bivariate
normal, the log likelihood function is

n 1 @2+ &2 — 2l
L(ﬁv’yv 57 9) = Zf(ylza y21|VV’L> = Z _ln(Qﬂ-) - ln(su,isé‘,i) - *lTL(l - pQ) - ( 2p )
i=1 i=1 2 2(1 = p?)
(8)
where
i — Y2 — X;
g = W Y2i31 Bo (9)
Sei
i — Zim — X;
711; _ Y2 71 ’}/2 (10)
Su,i
i = ) [-(Z5;0) (11)
Sui = fU(Zéz(su) (12)

For a flexible specification of variance functions f. and f,, a fourth order polynomial of a
monotonic function of the single index is used, with certain restrictions to avoid spurious
solutions. Details are available in the online appendix.

The key difference between the two models is the specification of correlation. For the
Lewbel (2012) estimator, constant covariance 6,5 implies

QLB

= 13
pLE Ss,isu,i ( )
where s.; and s, ; are specified in (11) and (12).5
For the Klein and Vella (2010) estimator, constant correlation 6y implies
prv = UOkv (14)

We can use the Akaike Information Criteria (AIC) to choose the model that gives a larger
value.®

AIC =2L(B,7,0,0) — 2K, (15)
where K, is the total number of parameters in the model.
3 Simulation Schemes and Results

3.1 Simulation Scheme
The simulation in this study follows (1) and (2) as:

i = Po+ By + X 2+ & (16)
Yoi = Yo+ Xiv2+ uy

®Again, it is not the only interpretation of Lewbel’s condition, but it is the most plausible one and I
choose to focus on this interpretation.

6Qther criteria such as Bayesian information criterion (BIC) / Schwarz criterion (SC) or Hannan—Quinn
information criterion (HQC) can also be used. And besides choosing between Lewbel and Klein-Vella spec-
ification of heteroscedasticity, one may also use these criteria to choose the suitable level of complexity in
the flexible approximation of the variance functions. In this paper, I choose to focus on the choice on the
form of heteroscedasticity, and I have fixed the complexity of the variance functions so that the number of
parameters for the two models are the same. These criteria essentially choose the model with a higher value
of log likelihood.



without excluded instrument Z;. There are K exogenous regressors z;, which are inde-
pendently distributed in standard normal. We consider the following two cases for the

heteroscedastic error terms with a common factor ;.
Case 1: Klein-Vella Type

g = 6[L‘p(XZI6€) (oq@i + Uli) (17)
u; = exp(X[6y) (aeb; + vy;)

where the heteroscedasticity affects the whole error term.
Case 2: Lewbel Type

gi = aib; +\/exp(X[d:)vy; (18)

w; = a9l +\/exp( X[, ) v

where the heteroscedasticity affects only the idiosyncratic component. 6;,vy; and vy; follow
independent standard normal distribution in the simulation.” The correlation between the
first-stage and structural error term is generated by the common factor 6;.

Simulated data from the above models are used to estimate the structural parameters g
using the methods described above.® Here T use all variables X as Z, variables.” The focus
is on the coefficient of the endogenous regressor ;. Median, 10" and 90" percentiles for the
point estimators are presented to assess the biasedness and skewness of the estimators.!? I
present the results for the J statistics to investigate the effectiveness of overidentifying tests
to detect the wrong specification of heteroscedasticity.

In this study, I mainly take 8, = 0!, so the values of mean and median of bootstrap
samples represent the corresponding biases. [y = ag = 0, fop = Yo = 1 for all k. oy
and ay are set to 1 and the associated correlation between ¢ and w is about 0.5. The
number of observations for each sample considered is 500 for most cases and some are 1000
for comparison. The number of replications is at least 2000 for each design. To assess
robustness, I allow different heteroscedastic parameters 6,; and 6., for the first variable in
X, and d,9 and 0., for all remaining X variables. Here, 0.5 is always set to zero.

3.2 Simulation Results

Table 1 and 2 show the simulation results for the two forms of heteroscedasticity respectively.
Results generally show that under the wrong form of heteroscedasticity, the estimators are
generally biased. Table 1 shows the results for data generated from the Klein-Vella form of
heteroscedasticity. The Lewbel estimators, both the original GMM and the ML, are biased
upward in the cases considered'?, while the 2-step and ML Klein-Vella estimators have
medians close to their true value. If we choose the estimator according to AIC!3, the correct
rates are usually higher than 0.5, though not always close to 1 in the cases considered. The
resulting estimator has a lower bias than the wrong ones. The over-identification J test has
low power in detecting the misspecification of the form of heteroscedasticity, with rejection
rates generally below 40%. The power is particularly weak when only one of the variables
gives rise to the heteroscedasticity in the first-stage error term.

Table 2 shows the results for data generated from the Lewbel form heteroscedasticity. In
this case, the two Klein-Vella estimators are biased downward in these cases, while the two
Lewbel estimators have median close to the true value. If we choose the estimator according
to AIC, the correct rates are generally higher than 0.5, and the resulting estimator is closer

"Results for the case with normalized Chi-square (5) errors and @ are shown in the online appendix.
8The estimators are coded in R by the author. See Online Appendix for more details.
9The default of ’ivreg2h’ in Stata uses all exogenous regressors for Z.

1Mean and standard deviation are not used here because there is a concern that some estimators may
not have moments like LIML.

HThis follows from Davidson and MacKinnon (2010) where the value of 3; is set to zero without loss
of generality, and the corresponding sampling distribution should just translate horizontally. I have also
included two cases with 5; = 1, and the results also show only a horizontal translation. The discrepancy is
likely due to sampling errors.

12More discussions about the sign of the bias are in the appendix. The direction relative to the OLS bias
is not always the same.

13 As the number of parameters in the two models are the same, this essentially compares the log likelihood
values.



to be median unbiased. The results for J test agrees with the nominal power as the Lewbel
is the true data generating process'4.

Table 1: Simulation Results for Data from the Klein and Vella Form of Heteroscedasticity,
Normal Errors

n K du1 du2 621 Pors BLB,cMM J Brv2-step  BrBmL Brv,ML Barc AIC
median median median median median median median  correct
(q10,q90) (q10,q90) (% p < .05)  (ql0,q90) (410,q90) (q10,q90) (q10,90) rate
p1=0
500 3 0.4 0.4 0.3 0.4362 0.2639 2.965 0.0206 0.2873 0.0076 0.0761 0.698
(0.385,0.485) (0.166,0.360) (0.198) (-0.309,0.210) (0.192,0.379) (-0.249,0.201) (-0.216,0.315)
500 3 04 0.4-0.3 0.4099 0.1500 2.857 0.0073 0.1566 -0.0107 0.0231 0.742
(0.363,0.459) (0.071,0.226) (0.193) (-0.182,0.132) (0.066,0.236) (-0.165,0.106) (-0.147,0.174)
500 3 0.4 04 0.5 0.4532 0.2906 5.392 0.0268 0.3198 0.0050 0.0173 0.878
(0.400,0.507) (0.180,0.401) (0.442) (-0.341,0.218) (0.226,0.409) (-0.250,0.193) (-0.242,0.266)
500 3 0.250.250.3  0.4824 0.3253 3.092 0.0597 0.3323 0.0438 0.1171 0.675
(0.431,0.531) (0.177,0.471) (0.213) (-0.428,0.362) (0.165,0.489) (-0.512,0.387) (-0.457,0.398)
500 3 0.7 0.7 0.3 0.3112 0.1782 2.668 0.0108 0.2205 -0.0118 -0.0001 0.853
(0.260,0.363) (0.118,0.239) (0.167) (-0.118,0.104) (0.165,0.277) (-0.115,0.079) (-0.110,0.200)
500 3 0.7 0 0.3 0.4443 0.3209 1.482 0.0385 0.3423 0.0198 0.2465 0.486
(0.394,0.494) (0.216,0.422) (0.051) (-0.415,0.303) (0.244,0.432) (-0.399,0.317) (-0.291,0.403)
500 3 0.7 0 0.5 0.4682 0.4034 1.506 0.1584 0.4284 0.0957 0.3361 0.617
(0.414,0.525) (0.280,0.526) (0.052) (-0.510,0.857)(0.335,0.517) (-1.110,0.998) (-0.855,0.837)
500 100.250.25 0.3 0.4100 0.2290 10.98 0.0508 0.2504 0.0141 0.1209 0.587
(0.362,0.462) (0.146,0.312) (0.141) (-0.126,0.179)(0.176,0.324) (-0.172,0.164) (-0.136,0.286)
50010 0.7 0 0.3  0.4446 0.3275 9.171 0.1105 0.3135 0.1127 0.2681 0.393
(0.394,0.495) (0.221,0.431) (0.061) (-0.176,0.353) (0.200,0.424) (-0.298,0.389) (-0.124,0.407)
50010 0.7 0 0.5 0.4693 0.4087 9.126 0.2049 0.4249 0.2660 0.3553 0.535
(0.415,0.524) (0.287,0.530) (0.054) (-0.173,0.808) (0.325,0.528) (-0.945,1.019) (-0.520,0.872)
1000 3 0.4 0.4 0.3 0.4339 0.2610 4.562 0.0156 0.2924 0.0044 0.0207 0.854
(0.400,0.468) (0.193,0.329) (0.367) (-0.226,0.155) (0.228,0.351) (-0.151,0.134) (-0.146,0.264)
10003 0.7 0 0.3 0.4419 0.3184 1.454 0.0202 0.3463 0.0002 0.1273 0.592
(0.406,0.479) (0.245,0.391) (0.053) (-0.319,0.223) (0.285,0.409) (-0.246,0.203) (-0.197,0.379)
1000100.250.25 0.3 0.4083 0.2226 12.83 0.0290 0.2487 0.0045 0.0252 0.800
(0.374,0.443) (0.164,0.280) (0.244) (-0.102,0.127) (0.192,0.302) (-0.119,0.104) (-0.112,0.240)
pr=1
500 3 0.4 04 0.3 1.4339 1.2633 2.978 1.0167 1.2842 1.0104 1.0830 0.676
(1.383,1.487)(1.168,1.358) (0.205) (0.703,1.209) (1.186,1.376) (0.762,1.203) (0.791,1.309)
500 3 0.7 0 0.3 1.4443 1.3203 1.498 1.0431 1.3436 1.0216 1.2390 0.516

(1.391,1.498) (1.216,1.422) (0.053) (0.579,1.308) (1.239,1.439) (0.591,1.313) (0.708,1.408)

The number of repetition is at least 2000. The correlation between the first stage and structural
error is set at about 0.5. §,1 is the coefficient for the variance function of the first stage error for
the first variable of X, while §,2 is the coefficient for all remaining X variables. Similar for d.; and
0e2 and I set §co = 0. The J statistic is the corresponding statistic under the Lewbel GMM method.
Barc reports the estimate when the one with higher AIC is chosen between the two ML estimators.

14Some computational issues for the J statistic are discussed in the Online Appendix. Also note that, the
finite sample bias can take a rather large sample size to remove, as also shown in Stock and Wright (2000).



Table 2: Simulation Results for Data from the Lewbel Form of Heteroscedasticity, Normal

Errors
n Kdui1du2 01 Bors BrB,aMM J Brv,2-step BrB,ML Brv,ML Barc AIC
median median median median median median median  correct
(q10,q90) (q10,q90) (% p < .05)  (q10,q90) (q10,q90) (q10,q90) (q10,q90) rate
B1=0
500 3 0.50.50.3 0.4086 0.0083 1.483 -0.5354 -0.0114 -0.7692 -0.0398 0.846
(0.354,0.462) (-0.145,0.139) (0.061) (-1.210,-0.110) (-0.177,0.130) (-1.242,-0.143) (-0.694,0.120)
500 3 0.50.5-0.3  0.4067 0.0118 1.451 -0.2887 0.0152 -0.3349 -0.0878 0.579
(0.355,0.460) (-0.131,0.129) (0.059) (-0.799,-0.021) (-0.135,0.141) (-0.703,-0.086) (-0.554,0.101)
500 3 0.50.50.5 0.4092 0.0087 1.480 -0.5598 0.0065 -0.6655 -0.0026 0.930
(0.355,0.461) (-0.152,0.149) (0.059) (-1.263,0.068) (-0.164,0.154) (-1.243,2.118) (-0.215,0.152)
500 3 0.30.30.3 0.4689 0.0400 1.494 -0.1969 -0.0304 -0.1251 -0.0525 0.720
(0.414,0.520) (-0.233,0.258) (0.067) (-0.956,1.339) (-0.320,0.256) (-1.228,2.192) (-2.259,0.260)
500 3 0.80.80.3 0.2830 -0.0004 1.530 -0.4740 -0.0036 -0.5085 -0.0127 0.894
(0.222,0.342) (-0.081,0.074) (0.058) (-1.000,-0.211) (-0.085,0.076) (-0.965,-0.256) (-0.282,0.073)
500 308 0 0.3 0.4231 0.0104 1.485 -0.5741 -0.0294 -1.0829 -0.0549 0.825
(0.366,0.477) (-0.166,0.160) (0.060) (-1.352,1.205) (-0.219,0.141) (-1.274,2.186) (-0.968,0.177)
500 3 0.8 0 0.5 0.4222 0.0113 1.483 -0.5613 -0.0049 2.0812 0.0284 0.752
(0.362,0.479) (-0.181,0.184) (0.058) (-1.445,1.533) (-0.199,0.163) (-1.221,2.267) (-0.213,2.139)
500 100.30.3 0.3 0.3905 0.0337 9.467 -0.2512 0.0220 -0.3710 -0.0054 0.795
(0.337,0.447) (-0.097,0.151) (0.084) (-0.518,-0.030) (-0.093,0.137) (-0.851,-0.047) (-0.483,0.124)
500 100.8 0 0.3 0.4229 0.0564 9.495 -0.2474 0.0146 -0.3215 0.0051 0.821
(0.368,0.478) (-0.114,0.208) (0.088) (-0.583,0.910) (-0.140,0.188) (-1.146,1.602) (-0.268,0.227)
500 100.8 0 0.5 0.4210 0.0584 9.551 -0.1920 0.0176 1.1201 0.0444 0.786
(0.363,0.479) (-0.126,0.231) (0.089) (-0.624,1.171) (-0.156,0.207) (-1.139,2.121) (-0.169,1.546)
1000 3 0.50.5 0.3 0.4087 0.0052 1.439 -0.6784 -0.0083 -0.9981 -0.0165 0.948
(0.369,0.449) (-0.102,0.099) (0.055) (-1.358,-0.285) (-0.128,0.093) (-1.251,-0.443) (-0.167,0.087)
1000 3 0.8 0 0.3 0.4216 0.0040 1.422 -0.8069 -0.0151 -1.1894 -0.0280 0.922
(0.383,0.460) (-0.117,0.113) (0.051) (-1.583,-0.320) (-0.167,0.102) (-1.280,2.185) (-0.248,0.096)
1000100.30.3 0.3 0.3900 0.0153 9.006 -0.3531 -0.0003 -0.4846 -0.0081 0.926
(0.352,0.430) (-0.075,0.099) (0.068) (-0.609,-0.154) (-0.092,0.079) (-0.948,-0.237) (-0.145,0.074)
pr=1
500 3 0.50.50.3 1.4071 1.0093 1.473 0.4742 0.9918 0.2510 0.9629 0.851
(1.354,1.462) (0.856,1.139) (0.059) (-0.173,0.897) (0.835,1.134) (-0.234,0.856) (0.362,1.124)
500 308 0 0.3 1.4226 1.0115 1.518 0.4131 0.9784 -0.09827 0.9425 0.818
(1.370,1.477) (0.835,1.163) (0.057) (-0.382,2.214) (0.776,1.145) (-0.277,3.191) (-0.047,1.152)

Refer to the notes for Table 1.

4 Issues of Including Exogenous Excluded Instruments

The two estimators considered in this paper can be adjusted to include exogenous excluded
instruments Z. Lewbel (2012) has shown this in his GMM formulation. For the two-step
Klein and Vella (2010) estimator and the ML formulation of this paper, it is also straight-
forward to include Z in the first-stage equation and the variance functions.

One purpose of including both types of instruments is to increase the precision of the
estimator by using both sources of identification, especially when the excluded instrument is
weak. Another purpose is to test the validity of the excluded instrument at hand, especially
under the Lewbel estimator through the over-identification J test. If we want to test the
validity of excluded instruments, we need the instruments from heteroscedasticity to be
valid. However, when we are usually not clear about the correct form of heteroscedasticity,
the results of this study show that the power of rejecting the null under a wrong form
of heteroscedasticity (Klein-Vella form) can be low even when the estimator is substantially
biased. When we reject the null hypothesis of valid over-identifying restrictions, it is not clear
whether it is the problem of the form of heteroscedasticity, or the endogeneity of the excluded
instrument. Similarly, if we cannot reject the null of valid overidentifying restrictions, it can
be that all instruments are valid, but it is also possible that the biases happen to be similar
from the two sources. Therefore, the J test alone cannot really provide us a clear conclusion.

Combining the maximum likelihood and model selection with AIC, the model chosen by



AIC should have more support from data, and we are then more confident about the true
form of heteroscedasticity. Then, if the Lewbel model is chosen, the corresponding over-
identification test can be more reliable. However, it should also be noted that there is still
a substantial probability that we would conclude a wrong form of heteroscedasticity from
AIC, and so the conclusion is still not totally reliable. Moreover, there can also be other
possible forms of heteroscedasticity.

5 Conclusion

The simulation results in this study show that the Lewbel (2012) and the Klein and Vella
(2010) estimators are not robust to misspecification of the form of heteroscedasticity. More-
over, the over-identification test proposed by Lewbel (2012), the Hansen’s (1982) J test, has
low power to reject the null under the Klein-Vella form of heteroscedasticity. The use of
AIC under maximum likelihood is more capable of distinguishing these two models. One
potential path for further research is to study the identification conditions for the cases in
between these two models. In particular, we should study what restrictions on variance and
covariance functions are necessary for identification and what procedure would enable us to
search for the right form of heteroscedasticity and the right variables to be included in each
variance and covariance function.

Empirical researchers should be cautious when using these two estimators. It is not
sufficient to justify only the existence of heteroscedasticity in the error term to apply these
estimators for consistency. We should also justify which form of heteroscedasticity appears
in the error terms. The use of the proposed maximum likelihood method and choosing the
model with largest AIC is a possible way to give more confidence in the chosen form of
heteroscedasticity against the other one.
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