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Abstract
We propose an empirical application of models derived in Bonanno et al. (2017) for estimating cost efficiency (CE) on

data used by Greene (1990) to test Gamma distribution for the inefficiency component and by Smith (2008) to test the

dependence between the two error terms of a Stochastic Frontier (SF). We also derive the closed–form of denisty

function of the overall error term and the formula to calculate the Cost Efficiency (CE) scores.
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1 Introduction

Our aim, in this paper, is to show the effects of (i) the asymmetry of the random error term and (ii) the

dependence between the two error terms of SF (random error term and the inefficiency component) in a

cost function, by using the generalization of stochastic frontiers (SF) proposed by Bonanno et al. (2017)

for production functions. We employ a well-known dataset used in previous literature in order to test some

methodological improvements in the SF approach.

The basic formulation of a cost frontier model can be expressed as c = f(Q,P;β)eǫ, where c is the

firm-specific total costs, Q is a vector of outputs, P is a vector of inputs prices and β is the vector of

unknown parameters (details are in Kumbhakar and Lovell, 2000). In the traditional SF specifications, the

error term, ǫ, is assumed to be made up of two statistically independent components - a positive random

variable, u, and a symmetric random variable, v. While u reflects the difference between the observed value

of c and the frontier and it can be interpreted as a measure of firms’ inefficiency, v captures random shocks,

measurement errors and others statistical noise. We have that ǫ = u + v in a cost function. The existence

of v implies random variations from the best frontier across firms.

We propose a model can capture the dependence structure between u and v, modeling it with a copula

function that allows us to specify the joint distribution with different marginal probability density functions

in a simple way. In addition, we introduce the asymmetry of the random error term using a Generalized

Logistic (GL) distribution. Finally, in a different approach from that of Greene (1990), who assigns a

Gamma function to the inefficiency component, we consider an Exponential distribution.

In some special cases, the convolution between the two error components admits a semi-closed expres-

sion also in cases of statistical dependence. An example is provided in Smith (2008), where the author

obtains an expression for the density of the composite error in terms of hypergeometric functions.1 We

obtain a first generalization of Smith (2008) using a GL distribution for the random error density. This dis-

tribution describes situations of symmetry or asymmetry (positive or negative) according to values derived

from one specific parameter. This allows us to analyze the statistical properties of a model which consider

both statistical dependence and possible asymmetry in the random error component.

1Smith (2008) assigns an exponential distribution to the inefficiency error and a standard logistic distribution for the random error.

It uses a Farlie-Gumbel-Morgerstern (FGM) copula to model the dependence between the two error components.



We are able to derive a semi-closed formula of the density function when we use a simple copula (FGM),

but for more complex cases (i.e. when we use a more complicated copula such as the Frank copula), we

build a computational tool that allows maximum likelihood estimation of SF models with a wide range of

marginal distributions (see Nelsen (1999) for details on copula functions). The resulting approximations of

the density of each sampling unit are then plugged into the log-likelihood function.

The paper proceeds as follows: Section 2 briefly explain the economic model and the statistical spec-

ification, and Section 3 reports the estimation from the US electricity industry, which were analyzed in

previous research (Smith, 2008; Greene, 1990) to test for dependence in the case of Smith and to test for

other marginal distributions in the case of Greene.2 Conclusions follow.

2 Model specification

2.1 The economic model

The model to be estimated is a cost function, expressed by a Cobb-Douglas relationship,3 with one output,

Q, that is a function of three inputs, labor, capital and fuel, with respective factor prices, Pl, Pk and Pf .4 In

order to consider the homogeneity of cost function with respect to input prices, the dependent variable and

two input prices (Pl and Pk) are expressed relative to Pf .

log

(

Cost

Pf

)

= β1logQ+ β2log
2Q+ β3log

(

Pl

Pf

)

+ β4log

(

Pk

Pf

)

+ u+ v, (1)

2.2 The statistical model

In what follows, we report the proposition in which we derive the density function of the composite error ǫ

when dependence is modeled through the FGM copula. For the more complicated Frank copula, we could

not derive a closed formula of the function of the error term, but the numerical tool we implement allows

us to obtain numerical estimations. We report details on the marginal distributions and copula functions in

table I.

2The same data are used also by Christensen and Greene (1976), but we got data from Table 3 in Greene (1990).
3We estimate the same model as was employed by all the authors using the well-known dataset used in this paper.
4Also, a quadratic term for the output Q is introduced in the model.



In particular, we assume that u ∼ E(δu), v ∼ GL(αv, δv) and the dependence between u and v

is modeled by FGM copula. Let k1(ǫ) be defined as k1(ǫ) = exp{− ǫ+δv [Ψ(αv)−Ψ(1)]
δv

}, we derive the

following:

• The density function of the composite error is

fǫ(ǫ; Θ) = w1(ǫ)2F1

(

αv + 1, αv +
δv

δu
;αv +

δv

δu
+ 1;−k1(ǫ)

−1
)

+

w2(ǫ)2F1

(

2αv + 1, 2αv +
δv

δu
; 2αv +

δv

δu
+ 1;−k1(ǫ)

−1
)

+

w3(ǫ)2F1

(

αv + 1, αv + 2
δv

δu
;αv + 2

δv

δu
+ 1;−k1(ǫ)

−1
)

+

w4(ǫ)2F1

(

2αv + 1, 2αv + 2
δv

δu
; 2αv + 2

δv

δu
+ 1;−k1(ǫ)

−1
)

,

(2)

where the functions w1(.), w2(.), w3(.) and w4(.) are, respectively, defined as:

w1(ǫ) = (1− θ)
αvk1(ǫ)

−αv

δu
(

αv +
δv
δu

) w2(ǫ) = 2θ
αvk1(ǫ)

−2αv

δu
(

2αv +
δv
δu

)

w3(ǫ) = 2θ
αvk1(ǫ)

−αv

δu
(

αv + 2 δv
δu

) w4(ǫ) = −4θ
αvk1(ǫ)

−2αv

δu
(

2αv + 2 δv
δu

) .

• The expected value, the variance and the third central moment of the composite error are given by:

E[ǫ] = δu, (3)

and

V [ǫ] = δ2u + δ2v [Ψ
′(αv) + Ψ′(1)] + θ δuδv [Ψ(2αv)−Ψ(αv)], (4)

where Ψ(·) and Ψ′(·) are, respectively, the Digamma and Trigamma functions.

Finally, the estimation of the cost efficiency CEΘ is obtained through 5

CEΘ = E[e−u|ǫ = ǫ∗] =
1

fǫ(.; Θ)

∫

ℜ+

e−ufu,v(u, x− u; Θ)du. (5)

5Details on calculation of CE scores are available upon request.



Table I: Marginal distribution functions and copulas.

Parameters Density Distribution

Exponential δu > 0 1
δu

e
−

u

δu 1− e
−

u

δu

GL αv , δv > 0 αv

δv

e
−

v+δv [Ψ(αv)−Ψ(1)]
δv

(

1+e
−

v+δv [Ψ(αv)−Ψ(1)]
δv

)

αv+1
(1 + e

−
v+δv [Ψ(αv)−Ψ(1)]

δv )−αv

FGM copula θ ∈ (−1, 1) 1 + θ(1− 2Fu)(1− 2Gv) FuGv

(

1 + θ(1− Fu)(1−Gv)
)

Frank copula θ ∈ (−∞,∞) \ {0}
θ(1−e

−θ)e−θ(F (u)+G(v))

[(1−e−θ)−(1−e−θF (u))(1−e−θG(v))]2
−θ−1 ln[1 +

(e−θF (u)
−1)(e−θG(v)

−1)

(e−θ
−1)

]

3 Empirical results

Our empirical application concerns the estimation of cost frontier for a sample of 123 firms operating in US

electricity markets in 1970. As mentioned in the Introduction, the same data sample was used by Greene

(1990) and Smith (2008) to provide applications of new SF specifications. We include these applications in

order to provide a thorough comparison between the different statistical models. In fact, in addition to the

classic SF, we estimate different models, as summarized in Table II.

Table II: Summary of the statistical models.
Name Random Error Distribution Inefficiency Distribution Dependence

Classic SF Normal (σ2
v) Truncated Normal (σ2

u) No

IS Symmetric GL (αv = 1, δv) Exp (δu) No

DS Symmetric GL (αv = 1, δv) Exp (δu) FGM copula

DSFrank Symmetric GL (αv = 1, δv) Exp (δu) Frank copula

IA GL (αv , δv) Exp (δu) No

DA GL (αv , δv) Exp (δu) FGM copula

DAFrank GL (αv , δv) Exp (δu) Frank copula

Legend: ClassicSF , the traditional model of SF; IS, independence and symmetry; DS, model with FGM dependence and

symmetry; DSFrank , model with Frank dependence and symmetry; IA is the model with independence and asymmetry; DA

stands for FGM dependence and asymmetry; DAFrank , model with Frank dependence and asymmetry.

We use classic SF as the benchmark model. All the other models have the same marginal distributions

of the inefficiency error, while the distribution of random error component changes depending on which



specification is considered. In detail, IS, DS and DSFrank models consider the symmetry of the random

error term (the parameter αv , which is the skewness measure of GL distribution, is equal to 1, meaning

symmetry); IA, DA and DAFrank models consider the possibility of variation in the sign of skewness of

the random error.

Within these two groups of models, specifications differ from each other based on the functional form

of dependence and the skewness of v. In particular, we estimate one model with no dependence, one

specification with the FGM copula and one model with the Frank copula.

We report the empirical results in table III. The t-statistics are shown below the estimated coefficients.

After obtaining significant elasticities, we focus on the measures of association θs, i.e. the copula

parameters, that are negative but not significant in all three models constructed under hypotheses of depen-

dence. This is not a surprising finding because Smith (2008) also rejects the dependence between u and v.

Turning to the skewness issue, which is measured through αv-parameters, table IV shows the t-test on sym-

metry of the random error term v. In particular, we widely accept the null hypothesis of symmetry in all

three models (IA, DA and DAFrank) could capture the possible asymmetry of the random error term.

These two results are in line with the choice of IS model. In fact, it shows the smallest value of AIC measure,

even if, following Burnham and Anderson (2004), IS, DS and IA models are indifferent each other.

Based on the estimated models we compute the individual cost efficiencies (CE). In table V, we report

descriptive statistics of CE for each model (i.e. mean, standard deviation, minimum and maximum values),

and figure 1 shows the plot of CE for each firm and for the different specification. Figure 2 illustrates the

empirical density functions of efficiency levels for every model estimation. From both table and figures,

we can see the heterogeneity of results among the different models. For the IS model, which produces

the best specification, we can see that the estimated levels of CE are higher than those calculated through

classic SF. The average for the latter is 0.89, while is 0.94 for the former. The IS estimations show more

variability than Classic SF. In addition, the estimated values tend to be similar in the same class of models,

especially when dependence is the characteristic used to identify the class. In summary, figures 1 and 2, and

table V show that the efficiency scores estimated using our specifications are quite different among different

models, signaling the presence of an effect of dependence between u and v and/or asymmetry of random

error.



Table III: Estimates for US electricity market.
Classic SF IS DS DSFrank IA DA DAFrank

β0 -7.410 -7.877 -7.800 -7.875 -7.786 -7.773 -7.789

-22.17 -25.45 -25.16 -26.68 -23.01 -24.36 -26.29

β1 0.408 0.4467 0.4472 0.4712 0.4489 0.4502 0.4633

10.32 12.84 13.01 16.00 13.05 13.04 15.83

β2 0.031 0.0283 0.0283 0.0269 0.0282 0.0281 0.0274

11.55 11.71 11.86 13.06 11.66 11.63 13.25

β3 0.245 0.3111 0.2904 0.2855 0.2953 0.2870 0.2747

3.70 4.97 4.63 4.82 4.27 4.43 4.60

β4 0.059 0.0236 0.0329 0.0221 0.0356 0.0360 0.0268

0.96 0.42 0.59 0.41 0.62 0.64 0.50

δu 0.097 0.123 0.133 0.107 0.129 0.133

4.15 3.02 10.05 4.60 1.69 10.04

αv 0.662 0.745 1.020

1.50 1.73 2.61

δv 0.058 0.064 0.069 0.045 0.055 0.069

6.28 4.56 11.52 2.20 2.36 6.37

θ -0.99984 -0.4973 -0.99980 -0.4083

-0.85 -0.19 -0.41 -0.17

γ =
V (u)
V (ǫ)

∗

0.673 0.462 0.726 0.790 0.542 0.771 0.801

log-likelihood 66.12 68.20 68.62 67.54 68.52 68.74 67.51

AIC -118.24 -122.39 -121.25 -119.08 -121.04 -119.47 -117.02

Source: our elaborations on data from Greene (1990).

Legend: ClassicSF , the traditional model of SF; IS, independence and symmetry; DS, model with FGM dependence and

symmetry; DSFrank , model with Frank dependence and symmetry; IA is the model with independence and asymmetry; DA

stands for FGM dependence and asymmetry; DAFrank , model with Frank dependence and asymmetry.

*V(ǫ) for DSFrank and DAFrank is calculated as the variance of the estimated ǫ̂.

Table IV: Results of t-test on symmetry for v.

H0 : αv = 1 vs H1 : αv 6= 1

IA DA DAFrank

t-statistic -0.766 -0.592 0.051

p-value 0.444 0.552 0.999

Source: our elaborations on data from Greene (1990).

Table V: Some descriptive statistics of cost efficiency.

Classic SF IS DS DSFrank IA DA DAFrank

MEAN 0.8884 0.9447 0.8956 0.8815 0.9413 0.8913 0.8792

SD 0.0536 0.0627 0.0657 0.0605 0.0735 0.0479 0.0668

MIN 0.6812 0.6286 0.6271 0.5674 0.5891 0.6195 0.5693

MAX 0.9704 0.999957 0.9980 0.9519 0.9999 0.9973 0.9530

Source: our elaborations on data from Greene (1990).

Legend: ClassicSF , the traditional model of SF; IS, independence and symmetry; DS, model with FGM dependence and

symmetry; DSFrank , model with Frank dependence and symmetry; IA is the model with independence and asymmetry; DA

stands for FGM dependence and asymmetry; DAFrank , model with Frank dependence and asymmetry.
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Figure 2: Kernel density of cost efficiency for each model.
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4 Conclusions and future research

In this paper we propose the derivation of cost SF following the approach of Bonanno et al. (2017), which

models dependence between the random error and inefficiency components through copula functions and

assigns a flexible distribution to random error. The best model for the sample of 123 firms operating in

the US electricity market in 1970 is the most simple IS specification (independence and symmetry), but in

terms of CE scores, we estimate different values than those obtained through classic SF. Evidences proves

that our models offer improvement over classic SF estimations.

Our findings suggest additional research to further develop SF models would be beneficial. In particular,

one aspect to consider is the assignment of a more flexible distribution for the inefficiency component.

When exponential function is used for u, the so-called γ-parameter, calculated as the ratio between the

variance of the inefficiency and the variance of the overall error term, depends on the estimated value of δu,

to a significant extent, as the variance of u-exponential is equal to δ2u. In our empirical application on data

from US electricity, we estimate a “good value” of δu, which allows us to obtain a γ-parameter signaling the

presence of inefficiency, but, in many cases, the value of δu could be very small. However, the conclusion

of the absence of inefficiency, in this case, could be misleading.
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