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Abstract
In this paper, we consider an oligopolistic industry with demand uncertainty and study the welfare comparison

between the supply function competition and the stochastic Cournot competition. We prove that the expected

consumer surplus is always higher under the supply function competition. By numerical computations we also show

that the expected profits of the oligopolistic firms can be higher under the supply function competition only if the

demand uncertainty is above a critical threshold. This threshold is increasing in the number of firms, while decreasing

in the slope of the demand curve and the marginal cost of producing a unit output.
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1. Introduction

Economists have long criticized Cournot’s (1838) oligopolistic competition model for not allowing firms
the flexibility to adjust their output in the face of unanticipated demand shocks. A remedy was suggested
by Grossman (1981), who considered a new type of competition where firms have the possibility to commit
to supply functions specifying the quantity to be supplied as a function of the price. While the suggested
remedy was very wise, its (initial) success was arguable, since the supply function competition was found
to lead to a problem known as the multiplicity of equilibria. In fact, this problem is very disturbing,
since in any oligopoly without any type of uncertainties, it is possible to find infinitely many output
profiles, each of which can be supported by infinitely many profiles of supply functions in equilibrium.
Fortunately, all these multiplicities/indeterminacies, and consequently all arguments against the supply
function competition, may disappear under some additional assumptions about the demand or cost curves
or under some changes in the equilibrium concept, as was shown by Klemperer and Meyer (1989), Delgado
and Moreno (2004), Delgado (2006), and Król (2017).

The modification devised by Klemperer and Meyer (1989) was to introduce –to the oligopolistic
industry– an exogenous demand uncertainty with an unbounded support. In their model, firms simulta-
neously choose supply functions without knowing the realization of the demand shock/uncertainty. Right
after they learn the realization of the uncertainty (hence, the actual position of the demand curve) begins
the production stage, where firms can calculate –using the supply functions they chose in the previous
stage– a market clearing price and their actual supplies implied by this price. Since each possible real-
ization of the demand curve implies a distinct profit maximizing quantity of supply, the ability of firms
to commit, through supply functions, to all possible realizations of the profit maximizing quantities (and
all possible market clearing prices) protects them against the uncertainties they might face. Besides, the
number (or the measure) of the supply function equilibria would be significantly reduced in the presence
of demand uncertainty, because the supply function of each firm would need to pass through not a single
but a multiplicity of profit maximizing quantities, each of which corresponding to a distinct realization
of the demand curve. In fact, the uncertainty in demand can even ensure the uniqueness of equilibrium if
the demand curve and the marginal cost curve of each firm become linear when the price and the supply
become sufficiently large.

More recently, Delgado and Moreno (2004) and Delgado (2006), who followed a different path from
that of Klemperer and Meyer (1989), realized that if the Nash equilibrium concept is changed with the
coalition-proof equilibrium and if some additional conditions hold, not only the uniqueness of the supply
function equilibria can be ensured in a deterministic oligopoly but also this unique equilibrium and the
Cournot competition can lead to the same outcome. On the other hand, Król (2017) formalized an insight
of Klemperer and Meyer (1989) to show that the enormous multiplicity of the supply function equilibria
can be reduced in the absence of any uncertainties as well, if different supply functions have different costs
of implementation. Specifically, Król (2017) showed that when excess capacity is always costly, there is
even a one-to-one correspondence between the sets of Nash equilibria, and also (under some additional
conditions about the industry) between the sets of strategies surviving the iterated elimination of weakly
dominated strategies.

An important result of Klemperer and Meyer (1989), distinguishing it from the subsequent works
discussed above, is that the set of supply function equilibria under the demand uncertainty can never
boil down to the Cournot equilibria of a non-stochastic industry. As a matter of fact, Klemperer and
Meyer (1989) showed that for any realization of the demand uncertainty, the equilibrium quantities
of supply become always higher, and consequently the equilibrium profits become always lower, under
the supply function competition with demand uncertainty than under the Cournot competition without
uncertainties. However, they also predicted that when an uncertain demand curve is linear in price
and resultingly the supply function competition yields a unique equilibrium, the expected profits at this
equilibrium may be higher than the expected profits obtained under the stochastic Cournot competition
where firms choose their supply quantities before observing the realization of the demand uncertainty.
The reason they offer is that only under the supply function competition do firms adjust optimally to every
possible realization of the demand uncertainty. While the predicted superiority of the supply function
competition –in terms of the induced expected profits– over the stochastic Cournot competition may



lead each firm (that is able to correctly make this comparison) to act according to the predictions of
the supply function competition, whether this type of competition can also be desirable for consumers is
clearly another issue. As a matter of fact, this issue may become very relevant in oligopolistic regulatory
problems where the regulatory authorities that are endowed with the goal of optimally balancing the net
gains of consumers and producers have also the power of imposing on producers how they will compete
with each other. Motivated by the relevance of such problems, we investigate in this paper the possible
(ex-ante) welfare gains of the supply function competition –over the stochastic Cournot competition– for
both the oligopolistic firms and consumers. Basically, we show that the expected consumer surplus is
always higher under the supply function competition, whereas the expected profits of the oligopolistic
firms can be higher under the supply function competition only if the demand uncertainty is sufficiently
high.

The rest of the paper is organized as follows: Section 2 introduces an oligopolistic model borrowed
from Klemperer and Meyer (1989) along with the descriptions of the supply function and stochastic
Cournot competitions. Section 3 presents the results and Section 4 concludes.

2. Model

Borrowing from Klemperer and Meyer (1989), we consider an oligopolistic industry involving n ≥ 2 firms
who produce a single homogeneous good. The firms have identical cost functions such that each firm
producing a quantity of output q incurs the cost

C(q) = cq2/2 for all q ≥ 0, (1)

where c > 0 denotes the marginal cost of a unit output. The industry demand curve is given by

D(p, ǫ) = −mp+ ǫ, (2)

where p ≥ 0 is the market price of the good, m > 0 and ǫ ∈ [0,∞). The form of the cost and demand
curves, C(q) and D(p, ǫ), as well as the cost and demand parameters c and m are assumed to be commonly
known by the firms. On the other hand, ǫ is a scalar random variable with a probability density f(ǫ) that
is strictly positive everywhere on the support [0,∞). It is also assumed that there is common knowledge
about f(.). For the industry described above, we consider two types of competition.

2.1 Supply Function Competition

Under the supply function competition, a strategy for firm i is a function mapping price into a quantity
of output for this firm, i.e., Si : [0,∞) → (−∞,∞). In the pre-production stage, firms simultaneously
choose supply functions without knowing the realization of the demand variable ǫ. Right after they learn
the realization of ǫ begins the production stage, where firms calculate –using the supply functions they
chose in the previous stage– a market clearing price p(ǫ) that satisfies

n
∑

i=1

Si(p(ǫ)) = D(p(ǫ), ǫ). (3)

If this price exists and if it is unique, then the actual outputs (Si(p(ǫ)))
n
i=1 are produced. Otherwise,

each firm earns zero profits. For the game played in the pre-production stage of the above setup we focus
on the Nash equilibria in supply functions as in Grossman (1981) and Klemperer and Meyer (1989). We
say that a profile (list) of supply functions (S∗

i (p))
n
i=1 is a Nash equilibrium if for each firm i the function

S∗
i (p) maximizes its expected profits when all of the remaining firms stick to their supply functions in

the considered profile. Klemperer and Meyer (1989) shows that this implies that for each i

S∗
i (p) = q0i ((p

0
i )

−1(p)) (4)

where

p0(ǫ) = argmax
p≥0

p
(

D(p, ǫ)−
∑

j 6=i

S∗
j (p)

)

− C
(

D(p, ǫ)−
∑

j 6=i

S∗
j (p)

)

, (5)



and

q0i (ǫ) = D(p0(ǫ), ǫ)−
∑

j 6=i

S∗
j (p

0(ǫ)). (6)

2.2 Stochastic Cournot Competition

Here, a strategy for firm i is a nonnegative quantity of output, qi ∈ [0,∞). Let Q denote the industry
output; i.e., Q =

∑n

i=1 qi. Inverting (2), we obtain the inverse demand function

P (Q, ǫ) =
ǫ

m
−

Q

m
, (7)

for any Q ≥ 0. Using this, we can write the expected profits of firm i as follows:

E
[

P
(

qi +
∑

j 6=i

qj , ǫ
)

qi − C(qi)
]

(8)

Firms are assumed to simultaneously choose and implement their supplies without knowing the realization
of the uncertain demand variable ǫ. In this game we focus on the (Cournot) Nash equilibria in quantities.
We say that a profile of quantities (q̂i)

n
i=1 is a Nash equilibrium if for each firm i the quantity q̂i maximizes

its expected profits when all of the remaining firms stick to their quantities in the considered profile. That
is, for each i the quantity q̂i solves

max
qi≥0

E
[

P
(

qi +
∑

j 6=i

q̂j , ǫ
)

qi − C(qi)
]

. (9)

3. Results

Below, in Propositions 1 and 2, we will present the characterizations of the equilibria arising under the
supply function competition and the stochastic Cournot competition, respectively.

Proposition 1 (Klemperer and Meyer 1989). The supply function competition with demand uncer-

tainty has a unique Nash equilibrium characterized by

Si(p) = αp for all i, (10)

where

α =
1

2(n− 1)



−m+
n− 2

c
+

√

(

−m+
n− 2

c

)2

+
4m (n− 1)

c



 . (11)

Proof. See the proof of Proposition 8a in Klemperer and Meyer (1989). �

Proposition 2. The stochastic Cournot competition with demand uncertainty has a unique Nash equi-

librium characterized by

qCi =
E[ǫ]

n+ 1 +mc
for all i. (12)

Proof. Inserting (1) and (7) into (8), we can rewrite the expected profits of firm i as

E[πi(ǫ)] =
E[ǫ]

m
qi −

1

m

(

qi +
∑

j 6=i

qj

)

qi −
c

2
(qi)

2. (13)



Differentiating (13) with respect to qi we obtain the first-order necessary condition

E[ǫ]

m
−

1

m

(

2 qi +
∑

j 6=i

qj

)

− c qi = 0, (14)

which implies that the best-response (reaction) function for firm i is given by

qi =
1

2 +mc

(

E[ǫ]−
∑

j 6=i

qj

)

. (15)

Since the reaction functions of the firms are symmetric, we must have qj = qi ≡ qCi for all j 6= i in
equilibrium. Inserting this into (15) we obtain

qCi =
1

2 +mc

(

E[ǫ]− (n− 1) qCi

)

. (16)

Solving for qCi yields equation (12). Finally, we calculate the second-order differential of (13) with respect
to qi to obtain

∂2E[πi(ǫ)]

∂(qi)2
= −

2

m
− c, (17)

which is always negative. Therefore, the second-order sufficiency condition also holds, implying that the
profile (qCi )

n
i=1 satisfying (12) solves the maximization problem of each firm, constituting a Nash equilib-

rium. �

Below, we will calculate the expected profits of each firm and the expected consumer surplus obtained
at the equilibrium of each type of competition we are studying. Let us first consider the supply function
competition. We can use the equilibrium supply functions given by (10) and (11), the demand function
in (2), and the market clearing condition in (3) to calculate for any realization of ǫ the market clearing
price

pSF (ǫ) =
ǫ

nα+m
(18)

and the equilibrium quantities

qSF (ǫ) = Si(p
SF (ǫ)) =

αǫ

nα+m
for all i. (19)

It follows that for any realization of ǫ, the ‘realized’ equilibrium profits of each firm will be equal to

πSF (ǫ) = pSF (ǫ) qSF (ǫ)−
c

2
(qSF (ǫ))2 =

αǫ2

(nα+m)2

(

1−
cα

2

)

. (20)

Then, the equilibrium profits that each firm can expect before it learns the realization of the demand
uncertainty must be equal to

E[πSF (ǫ)] =
α

(nα+m)2

(

1−
cα

2

)

E[ǫ2]. (21)

On the other hand, for any realization of ǫ, the consumer surplus under the supply function competition
is given by

CSSF (ǫ) =

∫ n qSF (ǫ)

0

P (x, ǫ)dx− n pSF (ǫ) qSF (ǫ) =
n2 (qSF (ǫ))2

2m
=

n2 α2 ǫ2

2m (nα+m)2
. (22)

Thus, the expected consumer surplus under the supply function becomes

E[CSSF (ǫ)] =
n2 α2

2m (nα+m)2
E[ǫ2]. (23)



Now, we will consider the stochastic Cournot competition. Let qC = E[ǫ]/(n + 1 +mc). From (12),
we know that qCi = qC for all i. So, the equilibrium output of the industry must be equal to

QC = n qC =
nE[ǫ]

n+ 1 +mc
. (24)

Using (7) and (24), we can calculate for any realization of ǫ the corresponding market clearing price:

pC(ǫ) =
1

m

(

ǫ−
nE[ǫ]

n+ 1 +mc

)

(25)

It follows that for any realization of ǫ the equilibrium profits of each firm are equal to

πC(ǫ) = pC(ǫ) qC −
c

2
(qC)2 =

( ǫ

m

)

(

E[ǫ]

n+ 1 +mc

)

−

(

(n/m) + (c/2)

(n+ 1 +mc)
2

)

(E[ǫ])2. (26)

It is easy to check that the expected profits of each firm under the stochastic Cournot competition will
then be equal to

E[πC(ǫ)] =

(

2 +mc

2m

)

(E[ǫ])2

(n+ 1 +mc)
2 . (27)

On the other hand, for any realization of ǫ, the consumer surplus under the stochastic Cournot competition
can be calculated as

CSC(ǫ) =

∫ n qC

0

P (x, ǫ)dx− n pC(ǫ) qC =
n2 (qC)2

2m
=

n2

2m (n+ 1 +mc)2
(E[ǫ])2. (28)

Since CSC(ǫ) is independent of the realization of ǫ, the expected consumer surplus under the stochastic
Cournot competition, E[CSC(ǫ)], is also given by (28). Below, we will first show that the expected con-
sumer surplus is always higher under the supply function competition.

Proposition 3. The expected consumer surplus under the supply function competition is always higher

than under the stochastic Cournot competition.

Proof. Recall from (28) that E[CSC(ǫ)] = CSC(ǫ) since CSC(ǫ) is independent of ǫ. Then, comparing
(23) and (28), we observe that E[CSSF (ǫ)] > E[CSC(ǫ)] if and only if

n2 α2

2m (nα+m)2
E[ǫ2] >

n2

2m (n+ 1 +mc)2
(E[ǫ])2 (29)

or

1

(n+ m
α
)2

E[ǫ2] >
1

(n+ 1 +mc)2
(E[ǫ])2. (30)

First note that

E[ǫ2] = (E[ǫ])2
[

1 +

(

σ(ǫ)

E[ǫ]

)2
]

, (31)

where σ(ǫ) ≥ 0 denotes the standard deviation of ǫ. Thus, we have E[ǫ2] ≥ (E[ǫ])2, implying that the
inequality in (30) holds if

1

(n+ m
α
)2

>
1

(n+ 1 +mc)2
. (32)

On the other hand, the above inequality holds if

α >
m

1 +mc
. (33)



Using equation (11), the last inequality can be reduced to
√

(

−m+
n− 2

c

)2

+
4m (n− 1)

c
>

2m (n− 1)

(1 +mc)
+m−

(n− 2)

c
, (34)

implying that
(

−m+
n− 2

c

)2

+
4m (n− 1)

c
−

(

2m (n− 1)

1 +mc
+m−

(n− 2)

c

)2

> 0 (35)

or

(1 +mc)2
(

2mnc+ (n− 2)2
)

− 2mc (1 +mc) (mnc+ 2− n)− (mnc+ 2− n)2 > 0. (36)

After some simple algebra, one can show that the left hand side of the above inequality reduces to

4mnc (n− 2) + 4mc. (37)

This expression is always positive, since n ≥ 2 and m, c > 0 by assumption. Thus, (36) holds, implying
that E[CSSF (ǫ)] > E[CSC(ǫ)]. �

On the side of producers, we will see that neither the supply competition nor the stochastic Cournot
competition can always become ex-ante the superior mode of competition under demand uncertainty. To
show this we will compare E[πSF (ǫ)] and E[πC(ǫ)], respectively given by (21) and (27), using equation
(31). Note that the ratio σ(ǫ)/E[ǫ] in equation (31) is known as the coefficient of variation, which is a
unitless measure of relative variability. Moreover, it is independent of the realization of ǫ. Let us denote
this ratio by CV . Then, equation (31) can be rewritten as

E[ǫ2] = (E[ǫ])2
[

1 + CV2
]

. (38)

Let us denote by CV∗ the value of the coefficient of variation at which the expected equilibrium profits
obtained in the stochastic Cournot competition and in the supply function competition become equal.
By equating equations (21) and (27), this value can be calculated as:

CV∗ =

√

(2 +mc) (nα+m)
2

αm (2− cα) (n+ 1 +mc)
2 − 1, (39)

where α satisfies (11). When the coefficient of variation in demand, CV , is above (below) the threshold
value CV∗, the supply function competition leads to higher (lower) expected profits for each firm than the
stochastic Cournot competition. Also, as it should be apparent from (39) along with (11), the threshold
CV∗ depends on various attributes of the industry structure, involving the number of firms (n), the slope of
the demand curve (m), and the marginal cost of producing a unit output (c). Below, we will explore how
these attributes affect CV∗. However, due to the complex analytical form of CV∗(c,m, n), characterized by
equation (39) along with (11), we conduct our comparative statics analysis with the help of a computer.
Specifically, we change the demand slope parameter m in the set {1/81, 1/27, 1/9, 1/3, 1, 3}, and for each
value of m we plot the graph of CV∗ as a function of n and c, when n takes 15 integer values between 2
and 30 and c takes 15 real values between 0.01 and 30.00. These graphs are drawn in Figure 1, showing
that the threshold value of the coefficient of variation, CV∗, is always positive for all considered values
of m, n, and c. This is not surprising since an observation with CV∗ = 0 would be in contradiction with
Klemperer and Meyer (1989), who showed that in the absence of any (demand) uncertainty (i.e., when
CV = 0), the profits from the supply function competition must be always below the profits from the
Cournot competition.

Figure 1 also illustrates that an increase in the slope of the demand curve, m, reduces the threshold
value of the coefficient of variation, CV∗, at all values of n and c in their domains. Similarly, the cost
parameter c has a negative impact on CV∗ at all values of m and n in their domains. On the other hand,
the number of firms n is found to have a positive effect on CV∗ for all values of m and c. As a matter of
fact, this effect becomes larger when the cost parameter c is not very high.
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Figure 1. Plots of the coefficient of variation threshold CV∗(c,m, n).



4. Conclusion

In this paper, we have compared the welfares obtained under the supply function competition and the
stochastic Cournot competition in the presence of demand uncertainty. We have showed that the expected
consumer surplus is always higher under the supply function competition, whereas the expected profits
of the oligopolists can be higher under the supply function competition only if the demand uncertainty is
sufficiently high. In particular, we have found that the higher the slope of the industry demand curve or
the higher the marginal cost of producing a unit output or the smaller the number of firms in the industry,
the more likely that at any given level of demand uncertainty the supply function competition yields higher
expected profits than the stochastic Cournot competition in equilibrium. We should note that both an
increase in the slope of the demand curve and an increase in the marginal cost of a unit output result
in a decrease in the potential (maximal) social surplus that could be attained in a perfectly competitive
industry. Given this, our findings suggest that when the potential social surplus in the industry –some
part of which the oligopolistic firms can expect to extract when they compete in quantities or in supply
functions– is sufficiently small, the supply function competition with demand uncertainty becomes –from
the viewpoints of firms– inferior to the stochastic Cournot competition only when the size of the demand
uncertainty is also sufficiently low. On the other hand, when the number of firms in the industry is not
sufficiently small, the supply function competition with demand uncertainty can become a superior mode
of competition for the oligopolistic firms only at very high levels of uncertainties.

Our findings have real life implications especially in power (electricity) markets, where the supply
function competition is believed to model the strategic interaction between power generators much more
realistically than price (Bertrand) competition and quantity (Cournot) competition (see, for example,
Green and Newbery 1992, and Rudkevich and Duckworth 1998). Our results imply that when power
markets are faced with a sufficiently high uncertainty in demand, the supply function competition be-
comes a very desirable type of competition, being ex-ante Pareto superior to the quantity competition.
Our results also imply that regulators of power markets should not intervene to impose the quantity
competition except in situations they can estimate the demand uncertainty to be sufficiently low. Even,
in such situations, regulators may prefer not to intervene if the social welfare function they use for regula-
tory purposes attaches a sufficiently high weight to the welfare of consumers, who are –unlike producers–
‘always’ better off under the supply function competition independent of the size of demand uncertainty.
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