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Abstract
This study presents a simple method to identify the parameters in finite mixture models when a moment-generating

function (MGF) is present. We obtain the model conditions using a zero-inflated binomial model, a simple form of the

finite mixture binary model, and analyze the results using the Monte Carlo simulation. Using the zero-inflated and

standard binomial models, we compare the marginal effects of health care usage.
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1. Introduction

Finite mixture models are widely used in applied econometrics as they are
semi-parametric and flexible (Deb and Pravin, 1997; Deb and Trivedi, 2002;
Winkelmann, 2004). These models assume the sample of individuals comes
from a population containing a finite number of latent classes and that each
element is drawn from one of these latent subpopulations or strata. Let y be
a random variable and f (y) be its probability density function. Then, a finite
mixture model is such that: f (y | x,Θ) =

∑J

j=1 p
(j)f (j)

(

y | x,θ(j)
)

, where p(j)

is a proportion of jth component (
∑J

j=1 p
(j) = 1), f (j) (y) is a density of jth

component, x is a vector of regressors, θ(j) is a vector of parameters of jth
component, and Θ ≡

(

θ(1), . . . ,θ(J), p(1), . . . , p(J−1)
)

′

. This means that the
finite mixture model analyzes J types of individuals.

However, some finite mixture models—such as finite mixture cross-sectional
binomial (probit or logit) models—are not estimated because their parameters
are not identified. Teicher (1960) and Blischke (1964) indicated this research
gap and presented a sufficient condition for the identifiability of parameters.
Their results summarized that the J component mixture with T Bernoulli tri-
als is identifiable if J ≤ (T + 1) /2. In other words, a two-component finite
mixture cross-sectional probit or logit model is not identifiable whereas a panel
probit or logit model with T ≥ 3 is identifiable. Kasahara and Shimotsu (2014)
demonstrated that in finite mixture binomial models the number of components
can be non-parametrically identified if T ≥ 2, and the mixing proportions and
distribution of components can be identified when T ≥ 3.

However, previous studies have not confirmed whether the finite mixture
model can be identified using data other than the panel binary data. This paper
presents a simple method to identify finite mixture models given the presence
of a moment-generating function (MGF). This study demonstrates that a finite
mixture model is identifiable if the Jacobian determinant of the joint moments
and sample moments is not zero. Although we assume the MGF, finite discrete
distributions (such as binomial or multinomial variables) always have the MGF.
Therefore, our method will be useful in many applied econometric fields.

This study is organized as follows; Section 2 proposes the method to iden-
tify a finite mixture model and considers the identifiability of various discrete
distributions. Moreover, we propose a zero-inflated binomial model as the sim-
plest finite mixture binomial model. Section 3 depicts the results of the Monte
Carlo simulation of the zero-inflated binomial model. Section 4 applies the
zero-inflated binomial model using health care data. Section 5 concludes the
paper.



2. Discrete multivariate finite mixture models

2.1 Identifying finite mixture models

Let y ≡ (y1, y2, . . . , yK)
′ be a K×1 vector of random variables. To simplify the

calculation, we consider the case of discrete random variables. If yk is finite, an
MGF always exists. The MGF, thus, takes the following form:

My1,y2,...,yK (t1, t2, . . . , tK)

=

y
1

∑

y1

y
2

∑

y2

· · ·

yK
∑

yK

et1y1+t2y2+···+tKyKf (y1, y2, . . . , yK |Θ) , (1)

where f (y1, y2, . . . , yK |Θ) is a probability mass function (PMF), Θ is a param-
eter to be estimated, and yk is an upper bound of yk. To simplify discussion,
we omit the regressors x. Moreover, µ′

r1,r2,...,rK
is the (r1, r2, . . . , rK)th joint

moment around the origin of coordinates, which gives

µ′

r1,r2,...,rK
≡

y
1

∑

y1

y
2

∑

y2

· · ·

yK
∑

yK

yr11 yr22 · · · yrKK f (y1, y2, . . . , yK |Θ) . (2)

Then, we obtain the following relation:

µ′

r1,r2,...,rK
=

∂(r1+r2+···+rK)

∂tr11 ∂tr22 · · · ∂trKK
My1,y2,...,yK (t1, t2, . . . , tK)

∣

∣

∣

t1=t2=···=tK=0
. (3)

In a K-variate finite mixture model, the PMF can be written as

f (y1, y2, . . . , yK |Θ) =
J
∑

j=1

p(j)f (j)
(

y1, y2, . . . , yK |θ(j)
)

, (4)

where f (j) (·) is a component PMF, J is the number of components, p(j) ∈
(0, 1) is a proportion of jth component that satisfies

∑J

j=1 p
(j) = 1, Θ ≡

(

θ(1), . . . ,θ(J), p(1), . . . , p(J−1)
)

′

, and θ(j) ≡
(

θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
M

)

′

, where M is the

number of parameters of each component. When including regressors x, the
parameter θ(j) conditional on x is regarded as a link function F (j)

(

x′β(j)
)

such

as logit or probit distribution, where β(j) is a parameter vector of regressors x of
jth component. Therefore, when β is identifiable with respect to the link func-
tion F (·) and θ(j) is identifiable within the FM model, β(j) is also identifiable.
Thus, we only consider the case without regressors for simplicity. Since there
exist sample joint moments, such as E [yr11 yr22 · · · yrKK ], we obtain the following
proposition:

Proposition 1. When the Jacobian determinant of the simultaneous equations
composed of joint moments obtained by (2) is not zero, the K-variate and J-
component finite mixture model is identifiable.



Proof. The simultaneous equations of a J-component finite mixture model take
the following form:

J
∑

j=1

p(j)µ
(j)′
1,0,...,0 (θj) = E [y1] ,

...

J
∑

j=1

p(j)µ
(j)′
0,0,...,1 (θj) = E [yK ] ,

J
∑

j=1

p(j)µ
(j)′
2,0,...,0 (θj) = E

[

y21
]

,

...

J
∑

j=1

p(j)µ
(j)′
1,0,...,1 (θj) = E [y1yK ] ,

...

J
∑

j=1

p(j)µ(j)′
r1,r2,...,rK

(θj) = E [yr11 yr22 · · · yrKK ] . (5)

These simultaneous equations contain a (M × J + J − 1) × 1 vector of pa-
rameters Θ. Since we assume that the Jacobian determinant of the joint
moments and sample moments is not zero and the rank of the Jacobian is
(M × J + J − 1), the K-variate and J-component finite mixture model is iden-
tifiable.

When we use finite discrete variables, this proposition has a great advan-
tage. Since all statistical models using these variables have an MGF, we can
confirm the number of identified components of finite mixture models with this
proposition.

2.2 Examples

Let us consider a two-component (J = 2) finite mixture tri-variate binomial
model (K = 3). Its component PMF takes the following form:

f (j) (y1, y2, y3) =
3
∏

k=1

[

1− F
(j)
k

]1−yk
[

F
(j)
k

]yk

. (6)

In this case, the number of parameters to be estimated is 3 × 2 + 1 = 7. This
model can, thus, be identified because the Jacobian determinant of the MGF

and sample moments is
(

p(1)
)3 (

1− p(1)
)3 ∏3

k=1

[

F
(1)
k − F

(2)
k

]2

and is not zero



when F
(1)
k ̸= F

(2)
k . This result is essentially the same as the results of Teicher

(1963), Blischke (1964), and van Wieringen (2005).
Moreover, from Proposition 1, we also investigate some “unrealistic” finite

discrete distribution. For example, consider the three-component (J = 3) bi-
variate binomial distributions (K = 2, y1 and y2). Its Bernoulli trials of y1 is
three and that of y2 is two. Then, its component PMF obtains

f (j) (y1, y2) =

(

3
y1

)

[

1− F
(j)
1

]3−y1
[

F
(j)
1

]y1

×

(

2
y2

)

[

1− F
(j)
2

]2−y2
[

F
(j)
2

]y2

.

(7)

One of the determinants of the simultaneous equations of joint moments and
sample moments is

186, 624
(

F
(1)
1 − F

(2)
1

)(

F
(2)
1 − F

(3)
1

)(

F
(3)
1 − F

(1)
1

)

×
[

F
(1)
1

(

F
(2)
2 − F

(3)
2

)

+ F
(2)
1

(

F
(3)
2 − F

(1)
2

)

+ F
(3)
1

(

F
(1)
2 − F

(2)
2

)]4

×
(

p(1)
)2 (

p(2)
)2 (

1− p(1) − p(2)
)2

. (8)

Therefore, if not F
(j)
1 = F

(k)
1 (j ̸= k) , F

(1)
2 = F

(2)
2 = F

(3)
2 , p(j) = 0 (j = 1, 2),

or p(1) + p(2) = 1, this model with three components is identifiable.

2.3 Zero-inflated binomial models

A simplified finite mixture model is a zero-inflated binomial model. This model
treats zero-valued observations as special and its PMF takes the following form:

f (y1, y2, . . . , yK) = p(1)I (yk = 0, ∀k) +
J
∑

j=2

p(j)f (j) (y1, y2, . . . , yK) . (9)

From (9), we can observe that the first component PMF is concentrated at zero
with a probability of one; therefore, the zero observations are inflated. When
the component PMF follows a Bernoulli distribution, the equation becomes the
following:

f (y1, y2, . . . , yK) = p(1)I (yk = 0, ∀k) +
J
∑

j=2

p(j)
K
∏

k=1

[

1− F
(j)
k

]1−yk
[

F
(j)
k

]yk

.

(10)

In this zero-inflated binomial model, we obtain the following proposition:

Proposition 2. A bivariate zero-inflated binomial model is identifiable.



Proof. Without loss of generality, a bivariate zero-inflated binomial model
means K = 2 and J = 2 in (10), and its PMF is the following:

f (y1, y2) = p(1)I (y1 = y2 = 0) +
(

1− p(1)
)

2
∏

k=1

[1− Fk]
1−yk [Fk]

yk , (11)

where Fk ≡ F
(2)
k in (10). The relation between the joint moments and sample

moments is the following:
(

1− p(1)
)

F1 = E [y1] ,
(

1− p(1)
)

F2 = E [y2] ,
(

1− p(1)
)

F1F2 = E [y1y2] .

The Jacobian determinant of simultaneous equations is
(

1− p(1)
)2

F1F2. There-

fore, a bivariate zero-inflated binomial model is identifiable if 0 < p(1), F1, F2 <
1.

In a zero-inflated binomial model, a univariate mixture model is not identi-
fiable because the number of moments is one and is not larger than the number
of parameters. In a univariate case, if F1 = p(1), the PMF becomes

f (y1) = p(1)I (y1 = 0) +
(

1− p(1)
) [

1− p(1)
]1−y1 [

p(1)
]y1

. (12)

Then, the parameter p(1) is identifiable but this model is not practical in applied
econometric fields.

3. Monte Carlo simulation results

This section presents results of Monte Carlo simulation of a bivariate zero-
inflated binary model. The sample sizes used are 500 and 2,000, and the num-
ber of simulations in all experiments is set at 1,000. We generate two binary
variables y1 and y2 with probabilities of F1 and F2, respectively. To simplify the
calculation, we consider one parameter model and do not include any regressors
(covariates). The proportion of these two variables is 1− p(1) and the rest p(1)

are zeros.
Table I presents true values of

(

F1, F2, p
(1)
)

and the Monte Carlo simulation

results of the bivariate zero-inflated binomial model. The results of
(

F1, F2, p
(1)
)

show that the parameter estimates are unbiased. The root mean squared errors
(RMSE) decrease when the sample size increases in each simulation. Moreover,
if p(1) is large (1− p(1) is small), the bias for (F1, F2) is large since the non-zero
value is small.

4. An application in the RAND Health
Insurance Experiment

Using the same data from the RAND Health Insurance Experiment (RAND
HIE) of Deb and Trivedi (2002) and Cameron and Trivedi (2010, Ch.15), we



Table I: Monte Carlo simulation results

True N = 500 N = 2,000 True N = 500 N = 2,000
F1 0.25 0.001 0.001 0.25 0.005 0.001

(0.034) (0.017) (0.089) (0.042)
F2 0.5 0.000 0.001 0.5 0.005 0.004

(0.055) (0.027) (0.146) (0.067)
p(1) 0.3 −0.006 0.000 0.9 −0.008 −0.001

(0.072) (0.034) (0.048) (0.014)

True N = 500 N = 2,000 True N = 500 N = 2,000
F1 0.2 0.002 0.001 0.2 0.008 0.002

(0.039) (0.020) (0.108) (0.053)
F2 0.3 0.003 0.001 0.3 0.011 0.002

(0.054) (0.028) (0.152) (0.073)
p(1) 0.3 −0.013 −0.002 0.9 −0.053 −0.006

(0.117) (0.060) (0.193) (0.028)

Note: The mean bias reports appear without parentheses. RMSE are in parentheses.

analyze the difference between a bivariate zero-inflated binomial model and a
bivariate binary probit model without inflation. We use year = 3 and female
samples from this data. The number of observations is N = 2,875. The first
binary outcome is DMENTVIS (its mean is 4.28%) for an individual visiting psy-
chotherapy, and the second is DNOTMD (its mean is 20.52%) for an individual
visiting a non-medical doctor in the current year. When analyzing these out-
comes, a bivariate binary probit model is usually applied. However, since there
exist many zero-valued observations, a zero-inflated model, such as a bivariate
zero-inflated binomial model discussed in Section 2, may be more suitable to
analyze these bivariate binary outcomes. The regressors are age (AGE; its aver-
age is 26.97), log of family income (LINC; its average is 8.65), and the number
of chronic diseases (NDISEASE; its average is 12.52).

In a bivariate zero-inflated binomial model, we specify both F1 and F2 as
probit models, Φ (x′β1) and Φ (x′β2). The Φ (·) is a cumulative distribution of a
standard normal distribution, β1 and β2 are parameter vectors to be estimated,
and x is a vector of regressors. Moreover, a component proportion p(1) is 1 −
Φ (x′βp). An increase in x means a more likely transition from 0 to 0/1. Then,
the PMF of this model is

f (y1, y2) = (1− Φ (x′βp)) I (y1 = y2 = 0)

+ Φ (x′βp) [1− Φ (x′β1)]
1−y1 [Φ (x′β1)]

y1 [1− Φ (x′β2)]
1−y2 [Φ (x′β2)]

y2 .

This PMF is essentially the same as (11) and is identifiable from Proposition
2. Table II displays the estimated results of the two models, a bivariate zero-
inflated binomial model and a bivariate binary probit model, as well as values of



Table II: Estimated results of RAND HIE

Zero-inflated Bivariate probit

DMENTVIS

AGE 0.011 (0.003) *** 0.008 (0.003) ***
LINC 0.017 (0.104) 0.056 (0.042)
NDISEASE 0.014 (0.006) ** 0.013 (0.006) **
constant −2.331 (0.892) *** −2.603 (0.382) ***

DNOTMD

AGE 0.019 (0.002) *** 0.013 (0.002) ***
LINC −0.050 (0.028) * 0.024 (0.023)
NDISEASE 0.016 (0.004) *** 0.014 (0.004) ***
constant −1.081 (0.246) *** −1.594 (0.204) ***

Φ (·) = 1− p(1)

AGE −0.066 (0.020) ***
LINC 0.362 (0.099) ***
NDISEASE −0.002 (0.015)
constant 1.260 (0.719) *
ρ 0.126 (0.056) **

log-likelihood −1,887.012 −1,896.973
AIC 3,798.024 3,811.945
BIC 3,869.589 3,865.620

Notes: Standard errors are in parentheses; Statistically significant at the 1% (***),
5% (**), and 10% (*) levels; AIC = −2 lnL+ 2KL, BIC = −2 lnL+KL lnN , where
L is the maximum likelihood, KL is the number of parameters, and N is the number
of observations (N = 2,875).

the log-likelihood, Akaike’s information criteria (AIC), and Bayesian informa-
tion criteria (BIC). The maximum value of the log-likelihood and the minimum
value of the AIC determine the bivariate zero-inflated binomial model. The
minimum value of the BIC determines the bivariate binary probit model.

In Table II, we observe some features of the estimated parameters. First,
the estimated parameters of the two models resemble each other except for the
constant terms and insignificant variables, such as LINC. Even though the bi-
variate binary probit model allows the two variables to be correlated and the
zero-inflated model assumes independence of two binary variables, the zeros
capture the correlation. Second, the significance levels of the estimated pa-
rameters resemble each other. Third, in the transition from 0 to 0/1 of the
zero-inflated model, the log of income is statistically significant at the 1% level.



This indicates a difference in the interpretation of marginal effects of regressors.
Based on estimated results in Table II, we calculate marginal effects of regres-

sors. The average marginal effect of AGE to DMENTVIS (visiting psychotherapy)
in the bivariate probit model is 0.04% points, statistically significant at the 1%
level. In the bivariate zero-inflated binomial model, those values are −0.04%
points from a non-user to a user and 0.1% points on 0/1 decision making.
Both values are statistically significant at the 1% level. In the bivariate probit
model, however, the LINC has no effect on DMENTVIS (the average marginal ef-
fect is 0.2% points but not statistically significant), its value is 0.2% points from
a non-user to a user and statistically significant in the bivariate zero-inflated
binomial model (but has no effect on the 0/1 decision making).

5. Conclusions

This study analyzes identifiability of finite mixture models with the existence of
an MGF. Our results show that a finite mixture model is identifiable when the
Jacobian determinant of the joint moments and sample moments is not zero.
This paper obtains the conditions of a zero-inflated binomial model, which has
the simplified structure of a finite mixture model, and demonstrates that a bi-
variate zero-inflated binomial model is identifiable. Monte Carlo experiments
support our demonstration and show good performance. Using the RAND HIE
data, we compare the differences of estimated coefficients between a bivariate
zero-inflated binomial model and a bivariate binary probit model without in-
flation. We decompose the marginal effects of moving a non-user to a user and
the 0/1 decision making of users. Based on the bivariate zero-inflated binomial
model, increasing family income slightly converts a non-user into a user, but
has no effect in the bivariate binary probit model. These results suggest the
usefulness of the finite mixture models. When analyzing multi-variate binary
variables including panel data, it is feasible to estimate finite mixture models
using Proposition 1. If the estimated result of some variables is not significant,
finite mixture models are good alternatives.
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