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Abstract
Wind power is the largest renewable energy source, which produces a negligible amount of greenhouse gas (GHG)
emissions, has gained enormous attention in the electricity generation sector over the past decade in the United States.
In this study, a Data Envelopment Analysis (DEA) is implemented to quantitatively evaluate the relative efficiencies of
the 39 states' wind power production for the electricity generation. Eight output-oriented CCR (Charnes, Cooper, and
Rhodes) models are developed with different combinations of pre-determined four input and five output variables to
investigate the effect of electricity prices on the productive efficiency and to test the robustness of the DEA models.
The DEA results indicate that two-thirds of the states operate wind power efficiently. Although the high retail price of
electricity has a significant contribution to the productive efficiency of the six states, it does not affect the relative
efficiency scores of the nineteen states. The location and the size of operation are not advantage/disadvantage to
operating wind power at the most productive scale.

Department of Management & Marketing, College of Business & Technology, East Tennessee State University, Johnson City, TN 37614,
USA. 
Citation: Ümit Sağlam, (2019) ''The effects of electricity prices on productive efficiency of states' wind power performances in the United
States'', Economics Bulletin, Volume 39, Issue 2, pages 866-875
Contact: Ümit Sağlam - saglam@etsu.edu.
Submitted: October 27, 2018.   Published: April 25, 2019.

 

   



 

 

1. Introduction 

Global warming, which is a long-term increase in the overall average temperature of the Earth’s 
climate system, was first recognized by Fourier (1827). The primary cause of global warming is 
an irrepressible increase in the concentration of greenhouse gases (GHG) released by people 
burning fossil fuels. Arrhenius (1897) developed the first quantitative model to investigate the 
relationship between global surface temperature and carbon dioxide concentration. According to 
the National Oceanic and Atmospheric Administration (NOAA), the average global surface 
temperature increased by 0.65°C in the 21st century, and 2014, 2015 and 2016 were the three 
warmest years in a row since modern record-keeping began in 1880. According to the scenario 
projections in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
(IPCC), the ecosystem will face severe problems such as endangered of animal and plant species, 
food scarcity, malnutrition, floods, and freshwater problems, if the global warming is not 
restrained. Hence, global warming and climate change became the most critical environmental and 
political issue between countries. As of March 2019, a total of 185 Parties (184 countries and the 
European Union (EU) cover more than 88% of global greenhouse gas emissions) have signed and 
ratified the Paris Agreement, which aims to reduce the global average temperature well below 2°C 
above pre-industrial levels, and limit to 1.5°C above the pre-industrial levels to mitigate the risks 
and impacts of climate change significantly. Therefore, renewable energy sources, especially wind 
power which produces a negligible amount of GHG emissions, have gained enormous attention in 
the electricity generation sector over the past decade in the United States. 

Wind power is the most abundant renewable and sustainable energy source that generates 
electricity by converting the kinetic energy of wind. According to the American Wind Energy 
Association-AWEA’s dataset, the cumulative installed wind power capacity is doubled since 2010, 
and wind power provided 5.55% of electricity demand in 2016. During 2016, 82.17 GW installed 
wind power generated almost 226.5 million megawatt-hours (MWh) electricity which avoided 160 
million metric tons of carbon dioxide, and 88.5 billion gallons of water consumption. Besides, in 
2015, the Department of Energy has reported the wind power will provide the 10% of U.S. 
electricity demand by 2020, 20% by 2030 and 35% by 2050 that emphasizes the importance of 
wind energy for the United States as a whole, and as well as for each state.  

In the literature, there are more than four hundred Data Envelopment Analysis (DEA) – related 
articles for electricity generation sector, and they can be divided into two major streams of research 
evaluating the relative efficiency of decision-making units (DMUs). The first stream of research 
focuses on efficiency analysis of electricity distribution companies for different countries, and the 
second stream of research focuses on the energy efficiency of various operations. Two recent 
review studies cover both of these two streams. Mardani et al. (2017) review 144 published 
scholarly articles between 2006 and 2015 that include DEA application in energy efficiency, and 
Sueyoshi et al. (2017) provide a comprehensive literature review for DEA applied to energy and 
environment from the 1980s and 2010s.  

There are two groups in the DEA literature, which are including wind power. The first group of 
studies compare the productive efficiency of wind power/plants with other energy sources. 
Ramanathan (2001) utilizes from DEA to compare risk assessment of eight power technologies 
that include wind power as well. Sarica and Or (2007) investigate operational and investment 
efficiency of 65 hydro, thermal and wind power plants in Turkey. San Cristobal (2011) examines 



 

 

the productive efficiency of 13 renewable energy sources in Spain, and Lins et al. (2012) evaluate 
performance assessment of 11 alternative energy sources in Brazil. Kim et al. (2015) investigate 
the investment efficiency of photovoltaic, wind power and fuel cell in Korea between 2007 and 
2011. Saglam (2016, and 2018b) evaluates efficiency ranking of eight renewable energy 
technologies by applying four different ranking methodologies based on DEA. Ervural et al. (2018) 
consider wind power for a two-stage analytical approach to assess sustainable energy efficiency. 
Khanjarpanah et al. (2018) develop a multi-period double frontier network DEA model to 
sustainable location optimization of a hybrid wind-photovoltaic power plant with a real data of 
case study in Iran. The second group of studies focus on efficiency assessment of wind 
power/plants. Iglesias et al. (2010) evaluate the productive efficiency of 19 wind farms in Spain 
using DEA and SFA (Stochastic Frontier Analysis). Iribarren et al. (2013) evaluate operational 
efficiency of 25 wind farms in Spain combining DEA and LCA (Life Cycle Analysis), and 
Iribarren et al. (2014) develop two-stage DEA and EA (Emergy Analysis) for operational 
benchmarking evaluation of 25 wind farms in Spain. Ederer (2015) evaluates the capital and 
operating cost efficiency of offshore wind farms in the EU. Sameie and Arvan (2015) construct 
simulation based DEA model to compare 24 areas in Iran for wind farm feasibility. Wu et al. 
(2016) compare efficiency assessment of 42 wind farms in China using two-stage DEA and Tobit 
models. Niu et al. (2017) compare micrositing efficiency of 32 wind farms in China. Sağlam 
(2017a, 2017b) compares states’ electricity production performances by developing four different 
DEA models. Sağlam (2017c, 2018a) evaluates productive efficiency of large-utility scale wind 
farms in the United States and Texas respectively by developing two-stage DEA and Tobit models. 
Pan et al. (2018) apply meta-frontier DEA model and a regression method to evaluate wind power 
generation efficiency and its influencing factors. Pambudi and Nananukul (2019) develop a 
hierarchical dual DEA model for the selection of wind turbine site in Indonesia. Khanjarpanah and 
Jabbarzadeh (2019) propose cross-efficiency DEA model for sustainable optimization of wind 
farm location in Iran. Xin-gang and Zhen (2019) evaluate the technical efficiency of China’s wind 
power enterprise by using DEA model.    

This study focusses the relative efficiencies of the 39 states’ wind power performances for 
electricity generation by using Data Envelopment Analysis (DEA). This work extends the model 
presented by Sağlam (2017a, 2017b) by including the value of production variable into the analysis 
to investigate the effect of electricity prices on the productive efficiency of states’ wind power. In 
this paper, comprehensive DEA models are implemented to pre-determined four input and five 
output variables to measure and compare the relative efficiencies of the states that are operating 
wind power. The sensitivity analysis is conducted to investigate the effect of the variables by 
introducing new models with the various combinations of pre-determined four input and five 
output variables of the original model.  

The remainder of this paper is organized as follows: Section 2, presents an output-oriented DEA 
framework, for the CCR (Charnes, Cooper, and Rhodes). This section also describes the data in 
detail with the selection of input and output variables.  Section 3, reports the DEA results of each 
approach with the sensitivity analysis. Finally, Section 4, provides a summary and some 
concluding remarks. 

 

 



 

 

2. Methodology 

2.1. Data Envelopment Analysis (DEA) 

DEA is a non-parametric, multi-factor relative efficiency measure to evaluate and improve the 
efficiency of both manufacturing and service operations. Charnes et al. (1978) develop the DEA 
framework to calculate the relative efficiency score of DMUs. The model’s objective is to 
maximize output variable(s) while keeping the current level of inputs fixed. The output-oriented 
CCR (Charnes, Cooper, and Rhodes) model can be formulated as a linear programming problem 
under constant returns to scale (CRS) assumption. The relative (global) technical efficiency score 

of the kth DMU (��) with n number of DMUs, s number of output and m number of input variables, 
can be formulated as Equation 1:    
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where ݏ௥+ and ݏ�− represent non-negative slack variables for output and input constraints 

respectively. ݔ�� represents the amount of ith input variable that is consumed by jth DMU; ݕ௥� 
represents the amount of rth output variable that is produced by jth DMU; and lastly �� represents 

structural variables.  

2.2. Data Description 

This study evaluates wind power performances of the 39 states that have utility-scale wind 
project(s) to generate electricity, by using pre-determined four input and five output variables.  

2.2.1. Input Variables 

In this study, we consider four input variables for the DEA formulation: (1) installed wind capacity, 
(2) number of wind turbines, (3) total project(s) investment, and (4) annual land lease payment.   

The installed wind capacity is one of the most critical input variables because there is a strong 
correlation between the installed wind capacity and the electricity generation. Hence, it has a 
significant effect on the output variables and the technical efficiency scores of the states. The 
number of wind turbines is selected as the second input variable to include land requirement into 
the analysis. The total capital investment is chosen for the third input variable because the total 
system levelized cost of unit electricity production varies with the incentives and technological 
advancements over the years. Lastly, the average is chosen as the fourth input variable of this study 
because annual land lease ranges from $1,000 and $4,000 per MW installed capacity that depends 
on the individual wind turbine capacity, the capacity of the plant and the value of the land.  



 

 

2.2.2. Output Variables 

In this study, we consider five output variables for the DEA model: (1) net generation, (2) 
percentage of in-state energy production, (3) number of U.S. homes powered, (4) wind industry 
employment and (5) the value of generated electricity.  

As discussed above, there is a strong correlation between the installed wind capacity and the 
generated electricity, so that the net electricity generation is one of the most critical output 
variables for this study. The wind power has a crucial role in each state to meet their Renewable 
Portfolio Standards (RPS) requirements. Hence, the percentage of wind power in-state electricity 
generation is selected as an output variable for the DEA analysis. The average household electricity 
consumption fluctuates state-by-state so that the number of U.S. houses powered by the in-state 
production is also selected as an output variable. There are more than 88,000 employers in the 
wind industry so that the distribution of them among the states is another output variable for the 
DEA analysis. Lastly, the average residential, retail price of electricity varies between ¢7.70 and 
¢23.85 per kilowatt-hour (kWh), that cause a significant difference in the value of the production 
which is chosen the last output variable for the DEA models.  

The dataset is collected from AWEA’s state fact sheets. Table 1 summarizes the descriptive 
statistics of input and output variables. On average, a state in the sample have installed capacity of 
1,938 MW with 1,266 wind turbines; have invested more than $3.6 to wind projects that pay about  
$5.5 million as annual land leases. Again, on average, a state in the sample generated 5,461GWh 
electricity that powered more than 446,600 homes with a value of $518.7 million.   

Table 1: Descriptive statistics of the input and output variables 

  DEA Input-Output Variables Average Minimum Maximum Stand. Dev. 

Input 1 Installed Wind Capacity (MW) 1,938 2 18,531 3,214 
Input 2 Number of Wind Turbines 1,266 1 10,751 2,177 
Input 3 Total Project Investment ($) 3,631,641,026 4,000,000 32,700,000,000 5,771,414,291 
Input 4 Annual Land Lease Payments ($) 5,491,026 50,000 50,000,000 8,555,976 
Output 1 Net Generation (MWh) 5,461,891 5,091 53,132,361 9,269,178 
Output 2 In-State Energy Production (%) 8.35 0.03 35.76 8.92 
Output 3 Equivalent U.S. Home Powered 446,601 434 4,100,000 724,025 
Output 4 Wind Industry Employment 2,194 50 24,500 4,155 
Output 5 Value of Generated Electricity ($) 518,724,749 567,647 4,399,359,491 807,031,094 

 
Table 2 presents the correlation matrix of input and output variables used in the DEA models. As 

seen from the table there are very strong positive correlations between all input and output 

variables in the model (except the second output variable). All the correlation coefficients values 

are significant even at 0.1%, which shows that all the input and output variables (except the second 

one) are very critical, and they are necessary for the DEA models. The second output variable, in-

state energy production (%), has a relatively low positive correlation coefficient values between 

all the input and output variables, but they are still significant at 5%. Hence, we keep this out 

variable in our models because of states’ RPS requirements that are discussed above.  

The original model (M1) includes four input and the first four output variables. The second model 
is constructed (M2) by adding the value of production variable on the original model to investigate 



 

 

the effect of electricity prices on the relative efficiency scores of the states. The sensitivity analysis 
is conducted by removing (or adding) input and output variable(s) from (or to) the original model 
for the robustness of the DEA models. Table 3 presents the input and output variables of the eight 
different models under four groups to evaluate the effect of electricity of prices on the productive 
efficiency of states’ wind power operations. Group 1 models (M1 and M2) consider the full set of 
input-output variables, Group 2 and Group 3 models include physical investment and monetary 
cost respectively into account. Group 4 models discard all the output variable except net generation 
and its value.  

Table 2: Correlation matrix of input and output variables 

  Input 1 Input 2 Input 3 Input 4 Output 1 Output 2 Output 3 Output 4 

Input 2 
0.928 

(0.000)               

Input 3 
0.998 

(0.000) 
0.944 

(0.000)             

Input 4 
0.987 

(0.000) 
0.932 

(0.000) 
0.989 

(0.000)           

Output 1 
0.997 

(0.000) 
0.905 

(0.000) 
0.992 

(0.000) 
0.980 

(0.000)         

Output 2 
0.408 

(0.010) 
0.338 

(0.035) 
0.410  

(0.010) 
0.363 

(0.023) 
0.441  

(0.005)       

Output 3 
0.996 

(0.000) 
0.910 

(0.000) 
0.993 

(0.000) 
0.979 

(0.000) 
0.999 

(0.000) 
0.451 

(0.004)     

Output 4 
0.965 

(0.000) 
0.844 

(0.000) 
0.954 

(0.000) 
0.952 

(0.000) 
0.973 

(0.000) 
0.389 

(0.015) 
0.966 

(0.000)   

Output 5 
0.987 

(0.000) 
0.962 

(0.000) 
0.991 

(0.000) 
0.982 

(0.000) 
0.981 

(0.000) 
0.438 

(0.005) 
0.984 

(0.000) 
0.940 

(0.000) 

Table 3: Input-Output combinations of eight models 

 
 

 

 

 

 

 

3. Results and Conclusions 

Equations 1 calculates the relative efficiency scores of the 39 states for the output-oriented CCR 
models that are presented in Table 4. Model 1 (M1) results are consistent with the results of the 
previous study (Sağlam (2017b)). Although the relative efficiency scores range from 0.358 and 
1.000, the average relative efficiency score is relatively high (0.830). There are only six states (DE, 
NE, NJ, MI, OK, and VT) that are operating wind power at the most productive scale size, and 

 Groups Group 1 Group 2 Group 3 Group 4 
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they reach the maximum efficiency score, 1.000. However, 25 states’ the relative efficiency score 
exceeds 0.80, and 14 of them exceed 0.90.  

Table 4: Efficiency scores of the output-oriented CCR models. 

States M1 M2 M3 M4 M5 M6 M7 M8 Mean Min Median Max S.D. 

AK 0.830 0.897 0.830 0.897 0.747 0.822 0.732 0.842 0.825(19) 0.732 0.830 0.897 0.060 
AZ 0.620 0.635 0.593 0.600 0.519 0.549 0.585 0.600 0.588(37) 0.519 0.596 0.635 0.037 
CA 0.655 0.736 0.645 0.710 0.591 0.691 0.655 0.736 0.677(32) 0.591 0.673 0.736 0.050 
CO 0.868 0.885 0.800 0.807 0.837 0.868 0.852 0.869 0.848(15) 0.800 0.860 0.885 0.031 
DE 1.000 1.000 1.000 1.000 0.557 0.557 0.820 0.840 0.847(16) 0.557 0.920 1.000 0.194 
HI 0.906 1.000 0.906 1.000 0.842 1.000 0.838 1.000 0.937(8) 0.838 0.953 1.000 0.072 
ID 0.795 0.795 0.795 0.795 0.756 0.756 0.785 0.785 0.783(23) 0.756 0.790 0.795 0.017 
IL 0.819 0.819 0.819 0.819 0.772 0.772 0.813 0.814 0.806(21) 0.772 0.816 0.819 0.021 
IN 0.746 0.747 0.746 0.747 0.640 0.640 0.746 0.747 0.720(28) 0.640 0.746 0.747 0.049 
IA 0.919 0.919 0.832 0.832 0.910 0.910 0.912 0.917 0.894(12) 0.832 0.911 0.919 0.038 
KS 0.945 0.961 0.945 0.961 0.925 0.954 0.945 0.961 0.950(6) 0.925 0.950 0.961 0.013 
ME 0.793 0.819 0.793 0.817 0.634 0.651 0.768 0.803 0.759(27) 0.634 0.793 0.819 0.074 
MD 0.972 1.000 0.972 1.000 0.630 0.670 0.967 1.000 0.902(10) 0.630 0.972 1.000 0.156 
MA 0.622 0.764 0.574 0.617 0.606 0.764 0.571 0.673 0.649(36) 0.571 0.619 0.764 0.078 
MI 1.000 1.000 0.921 0.929 1.000 1.000 0.960 1.000 0.976(5) 0.921 1.000 1.000 0.035 
MN 0.983 0.986 0.836 0.842 0.983 0.986 0.922 0.968 0.938(7) 0.836 0.976 0.986 0.065 
MO 0.712 0.715 0.712 0.715 0.548 0.548 0.709 0.712 0.672(34) 0.548 0.712 0.715 0.076 
MT 0.895 0.895 0.879 0.879 0.874 0.874 0.883 0.883 0.883(13) 0.874 0.881 0.895 0.008 
NE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000(1) 1.000 1.000 1.000 0.000 
NV 0.830 0.830 0.793 0.793 0.680 0.680 0.798 0.798 0.775(25) 0.680 0.795 0.830 0.060 
NH 0.949 0.998 0.949 0.998 0.598 0.649 0.906 0.980 0.879(14) 0.598 0.949 0.998 0.161 
NJ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000(1) 1.000 1.000 1.000 0.000 

NM 0.856 0.858 0.742 0.742 0.856 0.858 0.848 0.853 0.827(18) 0.742 0.854 0.858 0.052 
NY 0.667 0.696 0.667 0.696 0.612 0.657 0.611 0.661 0.658(35) 0.611 0.664 0.696 0.033 
ND 0.958 0.958 0.958 0.958 0.846 0.846 0.957 0.957 0.930(9) 0.846 0.958 0.958 0.052 
OH 0.824 0.827 0.824 0.827 0.665 0.665 0.807 0.814 0.781(24) 0.665 0.819 0.827 0.072 
OK 1.000 1.000 0.938 0.938 1.000 1.000 1.000 1.000 0.985(3) 0.938 1.000 1.000 0.029 
OR 0.708 0.709 0.644 0.644 0.673 0.674 0.704 0.709 0.683(31) 0.644 0.689 0.709 0.029 
PA 0.838 0.838 0.796 0.796 0.764 0.764 0.765 0.791 0.794(22) 0.764 0.794 0.838 0.030 
RI 0.358 0.411 0.212 0.232 0.358 0.411 0.358 0.411 0.344(39) 0.212 0.358 0.411 0.079 
SD 0.842 0.842 0.841 0.841 0.794 0.795 0.800 0.811 0.821(20) 0.794 0.826 0.842 0.023 
TN 0.816 0.816 0.451 0.451 0.816 0.816 0.745 0.751 0.708(30) 0.451 0.783 0.816 0.161 
TX 0.853 0.853 0.796 0.796 0.853 0.853 0.853 0.853 0.839(17) 0.796 0.853 0.853 0.026 
UT 0.588 0.588 0.532 0.532 0.580 0.580 0.563 0.571 0.567(38) 0.532 0.575 0.588 0.023 
VT 1.000 1.000 1.000 1.000 1.000 1.000 0.872 0.949 0.978(4) 0.872 1.000 1.000 0.046 
WA 0.791 0.791 0.756 0.756 0.760 0.760 0.791 0.791 0.774(26) 0.756 0.775 0.791 0.017 
WV 0.720 0.720 0.720 0.720 0.594 0.594 0.658 0.658 0.673(33) 0.594 0.689 0.720 0.056 
WI 0.742 0.749 0.742 0.749 0.659 0.660 0.677 0.697 0.709(29) 0.659 0.719 0.749 0.040 
WY 0.930 0.930 0.816 0.816 0.925 0.925 0.917 0.919 0.897(11) 0.816 0.922 0.930 0.050 

Mean 0.829 0.846 0.789 0.801 0.754 0.774 0.797 0.824 0.802 0.717 0.821 0.846 0.054 
Min 0.358 0.411 0.212 0.232 0.358 0.411 0.358 0.411 0.344 0.212 0.358 0.411 0.000 

Median 0.838 0.842 0.800 0.816 0.760 0.764 0.807 0.814 0.821 0.742 0.826 0.842 0.046 
Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.194 
Stdev 0.143 0.136 0.165 0.166 0.163 0.157 0.142 0.139 0.140 0.162 0.144 0.136 0.045 

 



 

 

The slack variables of the results indicate two main reasons for the low-efficiency scores. First, 
some states still use less efficient and less productive wind turbines which lead low-efficiency 
scores. For example, California (CA) has 8,413 active wind turbines for 5,662 MW installed 
capacity, even though it may maintain the same output level with 3,272 wind turbines. Therefore, 
old technology wind turbines should be replaced with the current technology to increase the 
productivity level. Second, excess capital investment leads to low-efficiency scores for the states.  

Although there are seven states may improve their productivity level by investing, 25 states 
overinvested to the wind energy regarding their optimum production scale. The slack variables 
show that on average each state invests 8.76% (about $160 million) more than their needs to reach 
the same output level. Again, CA has the highest excess investment regarding the dollar amount 
($1.55 billion), because of its early and expensive investments into the less productive wind 
technologies.  

The second model (M2) takes the average retail price of electricity into account by adding the 
value of the state’s total electricity production as an output variable. In M2, two more states (MD, 
HI) reach the maximum efficiency score beside the six states in the original model. In addition, six 
states (AK, CA, HI, MA, NH, NY) significantly increase their relative efficiency score by taking 
advantage of the high retail price of electricity even though some of them have genuine 
disadvantages such as sitting low-speed areas. Surprisingly, the electricity prices do not affect the 
relative efficiency scores of the nineteen states. This finding shows that it is possible to operate 
wind power at the most productive scale size, even though a state may have comparative 
disadvantages such as the retail price of electricity. For example, Oklahoma (OK) has one of the 
lowest electricity price (¢7.72 per kWh); it reaches the maximum efficiency score in both of these 
models.       

Figure 1: Comparison of States’ Efficiency Scores for the Output-oriented CCR Models 

 
 
As mentioned above, eight different models are constructed of four groups for the sensitivity 
analysis. Table 4 presents the relative efficiency scores of each state for the eight different models, 
and Figure 1 illustrates the fluctuation of the relative efficiency scores. Also, Table 4 presents the 
summary statistics of these eight models and the contribution of each model to the overall 
performances of each state. The Spearman’s rank correlation coefficient test is conducted between 
the models to test the robustness of the DEA models. The correlation coefficient values between 
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the original model (M1) and the other seven models range from 0.71 to 0.97 with p = 0.000. Hence, 
there is a strong positive association between the models at the 0.1% significance level. As seen 
from the table, the original model has the highest efficiency scores for the states because it is the 
most comprehensive DEA model including four input and five output variables. When the model 
comparison is constructed in each group, the highest percentage changes have occurred at the same 
states (AK, CA, HI, MA, NH, NY) that proves the robustness of the DEA models. According to 
the overall average of eight models, Nebraska (NE) and New Jersey (NJ) are the most efficient 
states for operating the wind power that reaches the maximum efficiency score in all of the eight 
models. This is a fascinating finding because NE and NJ are located under different wind patterns. 
Also, NE has a large installed wind power capacity where NJ has only 9 MW installed capacity. 
This finding indicates that the location and the size of operation are not advantage/disadvantage to 
operating wind power at the most productive scale. Besides, Rhode Islands (RI) is the least 
efficient state for operating the wind power at each one of the eight models because of its very low 
production, which is 697 MWh per MW where the average is 2,564 MWh per MW installed 
capacity. 

4. Conclusions 

This study focusses the relative efficiencies of the 39 states’ wind power performances by 
including the value of production variable into the analysis to investigate the effect of electricity 
prices on their productive efficiency. The output-oriented CCR model is applied for the DEA. The 
sensitivity analysis is conducted by introducing three new groups using pre-determined four input 
and five output variables.  

The critical findings of this study are listed as follow: First, two-thirds of the states (26 states) 
operate wind power efficiently. Second, early large investments in less productive wind 
technologies are the primary reason for the states’ low-efficiency scores (Sağlam (2017b)). Third, 
the high retail price of electricity has a critical contribution to the productive efficiency of the six 
states; it has no significant effect on the relative efficiency 19 states. Fourth, the low-electricity 
price is not a disadvantage to operate wind power efficiently (i.e., Oklahoma), but high electricity 
price is a critical incentive for the locations that have genuine drawbacks (i.e., California, low wind 
speed). Lastly, the location and the size of operation are not advantage/disadvantage of operating 
wind power at the most productive scale. Based on these findings, the following recommendations 
can be listed: First, the price of electricity should be taken into account to evaluate the productive 
efficiency of the energy sources. Second, old technology wind turbines should be replaced with 
the current technology to improve states’ productivity level. Lastly, well-designed economic 
incentives should be expanded to achieve the first milestone of the wind vision report.   
In conclusions, it is hoped that the findings of this study shed some light on the effects of electricity 
on the efficiency assessments of the states and the future of wind power for both energy 
practitioners and policymakers.  
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