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Abstract

We study the performance of Gauss quadrature methods based on sparse grids for approximating integrals involved in
mixed logit models. In Monte Carlo experiments we consider data generating processes in which consumer
heterogeneity has low variance and data generating processes in which it has high variance. In the former case we find
that, in line with previous literature, sparse grids produce very accurate estimates even when the number of points
used for approximating integrals is small. However, in the latter case sparse grids yield biased estimates and are
outperformed by quasi-Monte Carlo methods.
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1 Introduction

The mixed logit model is widely used because it models flexibly unobserved consumer
heterogeneity, which can be recovered by maximum likelihood (henceforth ML) estima-
tion. Its panel version accommodates repeated choice information in a random coefficient
logit framework. We refer to Train (2009) and the references therein for a discussion of
the main contributions and applications.

A well-known difficulty with this model is that only an approximation of the ML
estimator can be computed because the log-likelihood involves integrals that cannot be
computed analytically. To evaluate integrals of this type, typically Gauss quadrature
or Monte Carlo integration or a more efficient version of these is used. So-called quasi-
Monte Carlo (henceforth QMC) integration have been shown to outperform the Monte
Carlo method (e.g., Bhat 2001; Séndor and Train 2004). In an influential work Heiss
and Winschel (2008) propose Gauss quadratures based on sparse grids and find that
they outperform Monte Carlo and a simple type of QMC (i.e., Latin hypercube).

Heiss and Winschel (2008) evaluate the performance of sparse grid integration (hence-
forth SGI) in Monte Carlo experiments. We complement their experimental setting by
considering higher variances of the random coefficients. High variances may occur in
practice in markets where consumer heterogeneity is pronounced. In order to have a
more complete picture of SGI, it is important to evaluate its performance in such situa-
tions. As a main contribution we find that in such situations QMC methods outperform
SGI and we also provide a possible explanation for this phenomenon.

2 Model and estimation

Suppose that each consumer ¢ = 1, ..., n chooses one alternative from each of S different
choice sets. Each choice set has J alternatives. Let 3, € {0,1} denote the choice of
consumer ¢ in choice set s, that is, y;, = 1 if and only if alternative j is chosen. The
utility of ¢ corresponding to alternative j in s is assumed to be

Uijs = Tjs (B + Vo) + €4,
where z;, is a 1 x K-vector of attributes of alternative j in choice set s, 8 + Vo is the
random coefficient with unknown parameters 3 and o that are K x 1-vectors and V;
being a K x K diagonal matrix having standard normal random variables v; on its main

diagonal, and €;;, is a type I extreme value distributed error term.
The likelihood corresponding to consumer ¢ is
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where ® is the cumulative distribution function of the K-dimensional standard normal
distribution. This yields the log-likelihood for the n consumers

L (yl0) = Zln (¥'19)) (2)

the maximum of which with respect to 6 is the ML estimator. As already mentioned,
integrals of type (1) involved in the log-likelihood cannot be computed analytically.

3 Computation of the likelihood

Gauss quadrature and Monte Carlo integration are two well-established methods for
approximating integrals of type (1). Here we briefly present these and their versions
used in the paper.

3.1 (Gauss quadrature

Gauss quadrature approximates the integral (1) with the (deterministic) formula

R
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where z, are abscissas, which are predetermined points in R¥, and w, € R are their
weights, » = 1,..., R. Sparse grids are sets of abscissas that are especially suited for
multi-dimensional integrals (for details we refer to Heiss and Winschel 2008).

A drawback of SGI is that some weights can be negative, which may cause the integral
approximation to be negative (Heiss and Winschel 2008). When in the mixed logit the
variance of the random coefficients is relatively large, this phenomenon is more likely to
occur. In order to deal with this issue we replace the logarithm in the log-likelihood (2)
by the function

[ In(x), x >d,
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which is strictly increasing and is twice continuously differentiable on R. We take
d = exp (—20) in our computations, so on (0,00) the In, () function differs from the
logarithm only for very small values.

3.2 Monte Carlo integration

Monte Carlo integration uses the stochastic approximation

1 R
= a(0lv,),
R r=1



where v,., r = 1,..., R is a sample generated from the underlying distribution, which
is the K-dimensional standard normal in our case. This approximation is an unbiased
estimator of the integral (1). Several methods have been proposed to reduce the variance
of this estimator. One such method is QMC integration.

QMC integration uses a deterministic sample constructed in the unit hypercube,
which is transformed by the inverse cumulative distribution function. One class of such
quasi-random samples, called digital nets, has the property that the points of its low-
dimensional projections fill the corresponding unit hypercubes evenly. The simplest
example of a digital net is a Latin hypercube, which is a (0, 1, s)-net, that is, due to the
regular grid structure of a one-dimensional projection of a Latin hypercube its points
cover the [0, 1] interval evenly. A so-called (0,2, s)-net has the property that its one- and
two-dimensional projections cover the [0, 1] and [0, 1] x [0, 1] intervals evenly, respectively.

4 Results

We compare the performance of SGI and QMC in a Monte Carlo simulation experiment.
The data generating process and estimation are similar to those in Heiss and Winschel
(2008). The characteristics vector ;s is generated as a 1 x K vector of uniforms on
[0, 1], the number of choice situations is S = 5, the number of alternatives within a
choice situation is J = 5, and the number of consumers is n = 1000. We consider
two values for the dimension of the characteristics vector, namely, K = 5 and 10. The
parameter vectors 3 and o, similar to Heiss and Winschel, have equal components, that
is, 3= (3,...,8), @ = (0,...,0), where 8 = 1 in each case while ¢ takes two values,
namely, 0.5 and 3. In the estimation, similar to Heiss and Winschel, only the scalars
and o are estimated.

For SGI we use abscissas and weights corresponding to Kronrod-Patterson rules.? For
QMC integration we use Latin hypercube samples and (0, 2, s)-nets as well as (0, 3, s)-
nets constructed in the way described in Sdndor and Andras (2004). The bias and root
mean squared error (henceforth RMSE) reported are based on 100 replications over the
product characteristics.

Table 1 presents results for ¢ = 0.5 for SGI, Latin hypercubes and digital nets
(denoted LH and Net in the tables, respectively). In the 5-dimensional case SGI with
only R = 11 points produce estimates that have very low bias and low RMSE. The Latin
hypercube of size 11 produces both higher biases and RMSE’s.? The performance of SGI
with more points (R = 51 and 401) is not better than that with R = 11 and is rather
comparable to LH of size R = 51 and 401 and Net of size R = 49 (a (0,2, s)-net) and
343 (a (0,3, s)-net). The relative performance of the methods shows a similar pattern
in the 10-dimensional case: the SGI with R = 21 points matches the performance of the
methods with more points (i.e., LH of size R = 201 and 1201 and Net of size R = 169

2Downloaded from the web page http://www.sparse-grids.de/ created as a companion to the
paper by Heiss and Winschel (2008).

3We note here that there is no (0,2, s)-net of size 11 or comparable. In Section 5 we argue that this
is not an important drawback (see also Chiou and Walker, 2007).



(a (0,2, s)-net) and 1331 (a (0,3, s)-net)). Again, LH of size R = 21 produces estimates
with higher biases and RMSE’s. We note that these results are very much in line with
those obtained by Heiss and Winschel (2008, Table 5) for SGI and LH.

Table 1. Bias and RMSE when the standard deviation is 0.5

SGI LH Net
Bias RMSE Bias RMSE Bias RMSE
dimension 5
R=11 R=11
1] -0.002 0.030 -0.010 0.032 - -
o -0.013 0.079 -0.085 0.118 - -
R =51 R =51 R=49
I6] -0.002 0.030 -0.001 0.033 -0.004 0.029
o -0.005 0.080 -0.026 0.081 -0.042 0.092
R =401 R =401 R =343
I5] -0.004 0.030 -0.003 0.028 0.001 0.030
o -0.013 0.094 -0.020 0.088 -0.005 0.081
dimension 10
R=21 R=21
I6] -0.002 0.025 -0.020 0.032 - -
o -0.023 0.064 -0.089 0.115 - -
R =201 R =201 R =169
1] 0.004 0.026 0.001 0.024 -0.006 0.024
o 0.006 0.068 -0.012 0.068 -0.023 0.068
R =1201 R =1201 R =1331
Ié] -0.002 0.025 -0.000 0.029 0.002 0.027
o -0.006 0.068 -0.010 0.073 -0.005 0.079

The situation is quite different when ¢ = 3, as shown in Table 2. Both bias and
RMSE are higher in general. It is rather striking that SGI are outperformed both in
terms of bias and RMSE by the other two methods. Although the performance of SGI
improves as the number of points reaches R = 401 (5 dimensions) and R = 1201 (10
dimensions), the estimates are still rather biased. For such sample sizes or comparable
(specifically, R = 343 and 1331 for Net) LH and Net produce estimates with small biases
and RMSE’s.

The explanation for the relative poor performance of SGI is that for larger o there
are more consumers for which integrals of type (1) involved in the likelihood are ap-
proximated to be negative, so the likelihood will be computed with larger error, which
is eventually reflected in the ML estimator. In order to illustrate this, in a small Monte
Carlo study we estimated the likelihood components (1) and their logarithms at the true
parameter values by using SGI and Net and compared their performance based on their
relative magnitude with respect to the 'true’ values of (1) computed by Monte Carlo
based on a sample of size 100,000. Then we computed RMSE’s based on 100 replica-
tions. The RMSE’s corresponding to the likelihood components are 0.000002 (SGI) and
0.000043 (Net) when o = 0.5, and 0.00085 (SGI) and 0.00111 (Net) when o = 3, that



is, in both cases SGI outperforms Net. The RMSE’s corresponding to the logarithms of
the likelihood components are 0.0015 (SGI) and 0.0216 (Net) when o = 0.5, and 2.889
(SGI) and 0.427 (Net) when o = 3, so in the latter case SGI is outperformed by Net.
In the case o = 0.5 these findings are in line with the results obtained (in Table 1) for
the parameter estimates. When o = 3 the results obtained for the logarithms are in line
with those obtained for the parameter estimates (see Table 2), but for the likelihood
components SGI outperforms Net. We argue that this is due to the fact that in 5 out
of the 100 replications the estimates of (1) based on SGI are negative (as opposed to
the case 0 = 0.5 when all SGI estimates are positive). The phenomenon that some
estimates of the likelihood components (1) are negative does not mean that they are
imprecise (at least compared to Net), nevertheless, when computing the log-likelihood
one needs to replace the logarithm by a function of type (3), and this introduces error
in the log-likelihood. This error is then transmitted to the parameter estimates, as seen
in Table 2. Recall that the estimators computed with LH or Net are not affected by this
problem because the integrals are always estimated to be positive.

Table 2. Bias and RMSE when the standard deviation is 3

SGI LH Net
Bias RMSE Bias RMSE Bias RMSE
dimension 5
R=11 R=11
I6] -0.326 0.334 -0.374 0.377 - -
o -1.467 1.469 -1.046 1.047 - -
R =51 R =51 R=49
1] -0.169 0.182 -0.079 0.094 -0.210 0.217
o -0.981 0.985 -0.462 0.467 -0.289 0.298
R =401 R =401 R =343
15} -0.099 0.121 -0.046 0.076 -0.020 0.063
o -0.456 0.465 -0.050 0.100 -0.049 0.106
dimension 10
R=21 R=21
1] -0.454 0.458 -0.430 0.431 - -
o -1.907 1.908 -1.644 1.645 - —
R =201 R =201 R =169
15} -0.353 0.356 -0.211 0.217 -0.273 0.276
o -1.758 1.759 -0.817 0.819 -0.876 0.878
R =1201 R =1201 R =1331
1] -0.373 0.376 -0.080 0.098 -0.065 0.085
o -1.556 1.558 -0.292 0.309 -0.234 0.262

5 Conclusions

In this paper we conduct Monte Carlo experiments to investigate Gauss quadrature

methods based on sparse grids for approximating integrals involved in panel mixed



logit models. In doing so we complement the literature by considering data generating
processes in which consumer heterogeneity has high variance. We find that in this case
QMC methods (Latin hypercubes and digital nets) yield estimates of the parameters
that are closer to the truth. This has important consequences for the estimation of
panel mixed logit models in practice because if the underlying consumer heterogeneity
turns out to be pronounced, estimation based on a small number of points for evaluating
integrals may yield misleading results. As a safeguard against such situations we rec-
ommend using a large digital net (preferably a (0, 3, s)-net) for approximating integrals
involved in panel mixed logit likelihoods.

These conclusions are in line with the idea that empirical identification of the para-
meters may depend on the number of points used for integration. Several papers in the
literature starting with Chiou and Walker (2007) recommend using a large number of
points for the evaluation of integrals in order to detect identification problems that can
yield misleading estimates (see also, e.g., Brunner et al. 2017).

Our results also confirm previous findings by Heiss and Winschel (2008) that sparse
grids provide accurate approximations to integrals when consumer heterogeneity has
low variance. It is important to note that sparse grids can potentially be useful even
when consumer heterogeneity has large variance within estimation procedures where the
approximated integrals are allowed to take negative values (e.g., method of moments).
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